CIESC Journal ›› 2018, Vol. 69 ›› Issue (10): 4216-4223.doi: 10.11949/j.issn.0438-1157.20180523

Previous Articles     Next Articles

Theoretical analysis of wetting characteristics in rectangular microgrooves under electric field

YU Yingying1,2, TANG Jinchen1, HU Xuegong1,2   

  1. 1. Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2018-05-21 Revised:2018-07-17 Online:2018-10-05 Published:2018-07-24
  • Supported by:

    supported by the National Key R&D Program of China (2017YFB0403200).

Abstract:

A one dimensional semi analysis model was developed based on accommodation theory to study the effect of electric field on liquid wetting characteristics in vertical rectangular capillary microgrooves heat sinks. The effects of electric field intensity, heat flux and microgrooves dimensions on liquid wetting characteristics are investigated. The results show that the electric field can be utilized to improve the wetting length of liquid in microgrooves heat sinks. The wetting length decreases with heat flux under the electric field effect. When the heat flux is relatively small, the enhancement of the wetting length due to the electric field intensity is higher, yet the enhancement due to the electric field decreases with the heat flux. The accommodation length and the corner flow length under the action of electric field are studied and compared. Both the accommodation length and the corner flow length increase with the increasing electric field intensity yet the enhancement in corner flow length is more distinguished. Since the liquid film in the corner flow stage is thinner than the accommodation stage, according to thin film theory, the enhancement of the corner flow length is important to the heat transfer enhancement of the rectangular microgrooves. Effects of microgroove dimensions on wetting length under electric field effect are considered. The length of wetting under the action of electric field increases and decreases with the increase of groove depth and groove width. Compared with microgrooves with smaller depth and width, when the groove size is larger, the electric field strength is more significant for with the liquid wetting strengthening in the microgrooves.

Key words: microchannels, heat transfer, numerical analysis, electric field, rectangular microgrooves heat sink, wetting length

CLC Number: 

  • TQ021.3

[1] 胡学功, 唐大伟. 竖直毛细微槽群热沉中蒸发液体的干涸特性[J]. 化工学报, 2007, 58(3):575-580. HU X G, TANG D W. Dryout characteristics of evaporating liquid in vertical capillary microgrooves heat sink[J]. Journal of Chemical Industry and Engineering (China),2007, 58(3):575-580.
[2] 曹阳, 胡学功, 郭朝红, 等. 微槽群内汽泡动力学行为对接触线的影响[J]. 工程热物理学报, 2011, 32(9):1527-1530. CAO Y, HU X G, GUO C H, et al. The influence of bubble dynamics on solid-liquid-vapor triple-phase contact line in capillary microgrooves[J]. Journal of Engineering Thermophysics, 2011, 32(9):1527-1530.
[3] SAAD I, MAALEJ S, ZAGHDOUDI M C. Combined effects of heat input power and filling fluid charge on the thermal performance of an electrohydrodynamic axially grooved flat miniature heat pipe[J]. Applied Thermal Engineering, 2018, 134:469-483.
[4] SHEU T S, DING P P, LO I M, et al. Effect of surface characteristics on capillary flow in triangular microgrooves[J]. Experimental Thermal and Fluid Science, 2000, 22(1/2):103-110.
[5] 郭磊, 刁彦华, 赵耀华, 等. 电场强化微槽道结构毛细芯蒸发器的传热特性[J]. 化工学报, 2014, 65(S1):144-151. GUO L, DIAO Y H, ZHAO Y H, et al. Heat transfer characteristics of evaporator with rectangular microgrooves under electric field[J]. CIESC Journal, 2014, 65(S1):144-151.
[6] STROES G R, CATTON I. A semi analytical model to predict the dryout point in inclined rectangular channels heated from below[C]//Proceedings of the 11th Heat Transfer Conference, Kyonkjui:Heat Transfer Conference, 1998:133-138.
[7] NILSON R H, TCHIKANDA S W, GRIFFITHS S K, et al. Steady evaporating flow in rectangular microchannels[J]. International Journal of Heat and Mass Transfer, 2006, 49(9/10):1603-1618.
[8] YU D, HU X G, GUO C H, et al. Investigation on meniscus shape and flow characteristics in open rectangular microgrooves heat sinks with micro-PIV[J]. Applied Thermal Engineering, 2013, 61(2):716-727.
[9] 胡学功, 白莉, 王照亮, 等. 竖直矩形毛细微槽群轴向干涸高度的理论分析[J]. 中国石油大学学报:自然科学版, 2007, 31(3):119-123. HU X G, BAI L, WANG Z L, et al. Theoretical analysis of axial dryout point height in vertical rectangular capillary microgrooves[J]. Journal of China University of Petroleum, 2007, 31(3):119-123.
[10] NIE X L, HU X G, TANG D W. Modeling study on axial wetting length of meniscus in vertical rectangular microgrooves[J]. Applied Thermal Engineering, 2013, 52(2):615-622.
[11] GHAJAR M, DARABI J. Evaporative heat transfer analysis of a micro loop heat pipe with rectangular grooves[J]. International Journal of Thermal Sciences, 2014, 79:51-59.
[12] 江乐新, 王从权. 矩形微通道内流体流动特性的数值研究[J]. 热科学与技术, 2012, 11(1):59-63. JIAGN L X, WNAG C Q. Numerical study of flowing characteristics in rectangular microchannels[J]. Journal of Thermal Science and Technology, 2012, 11(1):59-63.
[13] 王涛, 胡学功, 唐大伟, 等. 矩形毛细微槽中三角形区域接触线特性的研究[J]. 工程热物理学报, 2009, 30(11):1892-1894. WANG T, HU X G, TANG D W, et al. Study on the characteristic of contact line in a triangle-wetting region of rectangular capillary microgrooves[J]. Journal of Engineering Thermophysics, 2009, 30(11):1892-1894.
[14] 柴永志, 张伟, 李亚, 等. 非均匀润湿性微通道表面池沸腾换热特性[J]. 化工学报, 2017, 68(5):1852-1859. CHAI Y Z, ZHANG W, LI Y, et al. Pool boiling heat transfer on heterogeneous wetting microchannel surfaces[J]. CIESC Journal, 2017, 68(5):1852-1859.
[15] YU Z, HALLINANI K, BHAGAT W, et al. Electrohydrodynamically augmented micro heat pipes[J]. Journal of Thermophysics and Heat Transfer, 2002, 16(2):180-186.
[16] LACKOWSKI M, KRUPA A, BUTRYMOWICZ D. Dielectrophoresis flow control in microchannels[J]. Journal of Electrostatics, 2013, 71(5):921-925.
[17] 刁彦华, 汪顺, 郭磊, 等. 电场强化微槽道结构蒸发器传热特性的实验研究[J]. 北京工业大学学报, 2014, 40(11):1707-1711. DIAO Y H, WANG S, GUO L, et al. Effect of electric field on the enhanced heat transfer characteristics of an evaporator with rectangular micro-channels[J]. Journal of Beijing University of Technology, 2014, 40(11):1707-1711.
[18] DIAO Y H, GUO L, LIU Y, et al. Electric field effect on the bubble behavior and enhanced heat-transfer characteristic of a surface with rectangular microgrooves[J]. International Journal of Heat and Mass Transfer, 2014, 78:371-379.
[19] FANG X Z, HU X G, YU D, et al. Experimental study of the heat transfer characteristic in vertical rectangular capillary microgrooves heat sink under an electric field[C]//ASME International Conference on Nanochannels. Japan, 2013.
[20] SUMAN B. A steady state model and maximum heat transport capacity of an electrohydrodynamically augmented micro-grooved heat pipe[J]. International Journal of Heat and Mass Transfer, 2006, 49(21/22):3957-3967.
[21] 秦志胜, 罗小平. 竖直微槽道内EHD强化饱和沸腾传热研究[J]. 低温与超导, 2010, 38(7):72-76. QIN Z S, LUO X P. EHD enhanced heat transfer in saturated boiling in vertical micro-channels[J]. Cryogenics & Superconductivity, 2010, 38(7):72-76.
[22] CHANG F L, HUNG Y M. Dielectric liquid pumping flow in optimally operated micro heat pipes[J]. International Journal of Heat and Mass Transfer, 2017, 108:257-270.
[23] STRATTON J A. Electromagnetic Theory[M]. Beijing:Science Press, 1992.
[24] 李超, 吴慧英, 黄荣宗. 电场作用下液滴分裂动力学行为的格子Boltzmann模拟[J]. 化工学报, 2014, 65(8):2882-2888. LI C, WU H Y, HUANG R Z. Lattice Boltzmann simulation of droplet breakup dynamic behavior under electric field[J]. CIESC Journal, 2014, 65(8):2882-2888.
[25] CATTON I, STROES G R. A semi-analytical model to predict the capillary limit of heated inclined triangular capillary grooves[J]. J. Heat Transfer, 2001, 124(1):162-168.
[26] SCHNEIDER G, DEVOS R. Non-dimensional analysis for the heat transport capability of axially grooved heat pipes including liquid/vaporinteraction[C]//18th Aerospace Sciences Meeting. Pasadena, CA, USA:AIAA, 1980, https://doi.org/10.2514/6.1980-214.
[27] AYYASWAMY P S, CATTON I, EDWARDS D K. Capillary flow in triangular grooves[J]. J. Appl. Mech., 1974, 41(2):332-336.
[28] STROES G. An experimental and analytical investigation of the wetted length supported in inclined capillary grooves heated from below[D]. Los Angeles, CA:UCLA, 1997.
[29] 钟艳, 罗小平. 微细通道EHD两相流传热研究[J]. 石油机械, 2011, 39(2):7-11+91. ZHONG Y, LUO X P. Research on the heat transfer of the EHD two-phase flow in the micro-channel[J]. China Petroleum Machinery, 2011, 39(2):7-11+91.
[30] 黄岗, 罗小平, 孙胜, 等. EHD强化微槽道两相流传热动力学研究[J]. 低温与超导, 2013, 41(9):59-64. HUANG G, LUO X P, SUN S, et al. Dynamic research of EHD enhancement two-phase flow heat transfer in micro channel[J]. Cryogenics & Superconductivity, 2013, 41(9):59-64.

[1] SHI Suli, LU Yuanwei, YU Qiang, WU Yuting. Optimization of heat removal modes for heat exchanger in molten salt single storage tank [J]. CIESC Journal, 2019, 70(3): 857-864.
[2] LIU Xiaoshi, ZOU Deqiu, HE Ruijun, MA Xianfeng. Preparation and heat transfer characteristics of GO/paraffin composite phase change emulsions [J]. CIESC Journal, 2019, 70(3): 1188-1197.
[3] ZHANG Hang, WENG Jianhua, CUI Xiaoyu. Heat transfer performance of pulsating heat pipe with hygroscopic salt solution [J]. CIESC Journal, 2019, 70(3): 874-882.
[4] HUANG Zhijia, LUO Liang, KE Rui, ZHUO Feifei, ZHONG Liang. Dehumidification performance experiment of hydrophilic non-woven PVC composite structured packing [J]. CIESC Journal, 2019, 70(3): 913-921.
[5] WU Changhao, LIU Linlin, ZHANG Lei, DU Jian. Inter-plant waste heat integration for industrial park using two medium fluids [J]. CIESC Journal, 2019, 70(2): 431-439.
[6] DOU Shan, ZHANG Guangyu, XIONG Zhihua, WANG Huangang. Danger situation awareness of chemical industry park based on multiple source data fusion [J]. CIESC Journal, 2019, 70(2): 460-466.
[7] WANG Li, WU Weidong, HU Kun. Influence of circulating air quantity on cooling system and water producing performance of new household pure water machine [J]. CIESC Journal, 2019, 70(1): 99-106.
[8] LIU Zhongyan, SUN Dahan, JIN Xu, WANG Tianhao, MA Yitai. Evaluation research on boiling heat transfer model of CO2 in tube [J]. CIESC Journal, 2019, 70(1): 56-64.
[9] HU Chenhui, WANG Yifei, BAO Zebin, YU Guangsuo. Effect of solid particles in evaporative hot water tower on bubble movement [J]. CIESC Journal, 2019, 70(1): 39-48.
[10] LIU Hong, HE Yang, CAI Chang, GAO Jiuliang, YIN Hongchao. Influence of ethanol and n-butanol additives on spray cooling [J]. CIESC Journal, 2019, 70(1): 65-71.
[11] ZHANG Lumeng, GUO Xianmin, XUE Jie. Experimental study of frost growth characteristics on surface of finned-tube heat exchangers [J]. CIESC Journal, 2018, 69(S2): 186-192.
[12] ZHANG Liang, SHI Zhongke. Application of phase change materials in automobile energy saving [J]. CIESC Journal, 2018, 69(S2): 17-25.
[13] XU Jingxuan, LIN Wensheng, RUAN Binhui. Preliminary study on heat transfer calculation of submerged combustion LNG vaporizer [J]. CIESC Journal, 2018, 69(S2): 147-152.
[14] WANG Haoxian, LI Jianrui, HU Haitao, DING Guoliang, WU Chunlin, CHEN Hui, XING Zhanyang. Analysis of influence of surging on heat transfer characteristics of liquified natural gas flow boiling in channel of plate-fin heat exchanger [J]. CIESC Journal, 2018, 69(S2): 101-108.
[15] SUN Zhichuan, LI Wei, YAN Xiaolong, MA Xiang, CHEN Wei, JIN Chunhua, WU Jie. Heat transfer and pressure drop characteristics inside stainless steel three-dimensional enhanced tubes [J]. CIESC Journal, 2018, 69(S2): 45-54.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!