CIESC Journal ›› 2018, Vol. 69 ›› Issue (9): 4044-4050.doi: 10.11949/j.issn.0438-1157.20180502

Previous Articles     Next Articles

Synergetic mechanism of hygroscopic agent, surfactant and catalyst on desulfurization of flue gas circulating fluidized bed

HAN Tianyi, YAO Yuan, XU Jun, QI Liqiang, LI Jintao, TENG Fei   

  1. Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071000, Hebei, China
  • Received:2018-05-14 Revised:2018-06-29 Online:2018-09-05 Published:2018-07-09
  • Supported by:

    supported by the National Natural Science Foundation of China (21376072) and the Fundamental Research Funds for the Central Universities(2017MS140).

Abstract:

To improve the desulfurization efficiency of flue gas circulating fluidized bed (FG-CFB), some synergists, such as hygroscopic agent, surfactants and catalyst, were added into the slaked lime. The experiments of desulfurization were carried out in FG-CFB. The results showed that the desulfurization efficiencies of 97.14%, 97.70% and 98.45% were achieved in which magnesium chloride(MgCl2), sodium dodecyl benzene sulfonate(SDBS), and adipic acid were added 1.3%, 0.03%, and 1.2% respectively. The desulfurization efficiency of 99.19% was obtained when hygroscopic agent, surfactant and catalyst were added into desulfurizer together with the mass fraction of 1.3%, 0.03% and 1.2%. Synergetic mechanism of MgCl2, SDBS and adipic acid were analyzed on the removal efficiencies of desulfurization. The desulfurization efficiency of flue gas circulating fluidized bed can be improved with a suitable content of hygroscopic agent, surfactant and catalysis in the desulfurizer and the outlet concentration reaches ultra-low emissions requirements.

Key words: flue gas circulating fluidized bed, ultra-low emissions, desulfurization efficiency, hygroscopic agent, surfactants, catalyst

CLC Number: 

  • X701.3

[1] 魏宝来. 中国煤炭消费需求突变识别分析及预测[D]. 西安:陕西师范大学, 2016. WEI B L. Identification and forecast of China's coal consumption demand mutation[D]. Xi'an:Shaanxi Normal University, 2016.
[2] 肖伟联. 恒运电厂烟气脱硫半干法改湿法技术经济分析[D]. 广州:华南理工大学, 2012. XIAO W L. Technical and economic analysis of flue gas desulfurization semi-dry method into wet technology in Hengyun Power Plant[D]. Guangzhou:South China University of Technology, 2012.
[3] 马双忱. 烟气循环流化床脱硫技术实验研究[D]. 保定:华北电力大学, 2002. MA S C. Experimental research on flue gas circulating fluidized bed desulfurization technology[D]. Baoding:North China Electric Power University, 2002.
[4] 付春柱. 火电厂半干法烟气脱硫技改研究[D]. 济南:山东大学, 2010. FU C Z. Research on semi-dry flue gas desulphurization of thermal power plant[D]. Jinan:Shandong University, 2010.
[5] 袁超. 燃煤锅炉氮氧化物和硫氧化物协同控制技术设计运行及环境安全效益评估[D]. 上海:华东理工大学, 2016. YUAN C. Design and operation of the synergetic control technology for nitrogen oxides and sulfur oxides in coal-fired boilers and assessment of environmental safety benefits[D]. Shanghai:East China University of Science and Technology, 2016.
[6] 钱成龙. 小型机组烟气脱硫超低排放技改方案研究及应用[D]. 南京:东南大学, 2017. QIAN C L. Research and application of the ultra-low emission technology for flue gas desulphurization of small units[D]. Nanjing:Southeast University, 2017.
[7] 李楠. 火力发电厂超低排放改造项目综合评估研究[D]. 北京:华北电力大学, 2017. LI N. Study on the comprehensive evaluation of ultra-low emission improvement projects for thermal power plants[D]. Beijing:North China Electric Power University, 2017.
[8] 梁礼信, 张志正. 循环流化床脱硫和煤粉炉烟气湿法脱硫的比较[J]. 广东电力, 2003, (16):29-32. LIANG L X, ZHANG Z Z. A comparison of CFB desulphurization and wet flue gas desulfurization in pulverized coal fired boilers[J]. Guangdong Electric Power, 2003, (16):29-32.
[9] 许配瑶. 烟气循环流化床同时脱硫脱硝实验研究[D]. 北京:华北电力大学, 2007. XU P Y. Simultaneous desulfurization and denitrification of flue gas circulating fluidized bed[D]. Beijing:North China Electric Power University, 2007.
[10] 董勇, 马春元, 王文龙, 等. 烟气脱硫循环流化床内的温度分布与干燥特性[J]. 热能动力工程, 2005, (5):492-496. DONG Y, MA C Y, WANG W L, et al. Temperature distribution and drying characteristics in flue gas desulfurization circulating fluidized bed[J]. Thermal Power Engineering, 2005, (5):492-496.
[11] 徐智英, 李学金, 葛园琴. 循环流化床脱硫技术在烧结烟气净化中的应用[J]. 环境科技, 2011, 24(A02):21-23. XU Z Y, LI X J, GE Y Q. Application of circulating fluidized bed desulfurization technology in sintering flue gas purification[J]. Environmental Science and Technology, 2011, 24(A02):21-23.
[12] 刘锦辉, 宋士娟, 辛成运, 等. 半干法脱硫中应用蒸汽相变促进细颗粒脱除[J]. 热能动力工程, 2010, 25(3):330-334. LIU J H, SONG S J, XIN C Y, et al. application of the steam phase change in semi-dry-method desulfuration to promote the removal of fine particles[J]. Thermal Power Engineering, 2010, 25(3):330-334.
[13] 环境保护部, 国家质量监督检验检疫总局. 火电厂大气污染物排放标准:GB 13223-2011[S]. 北京:中国环境出版社, 2012. Ministry of Environmental Protection, General Administration of Quality Supervision, Inspection and Quarantine. Emission standard of air pollutants for thermal power plants:GB 13223-2011[S]. Beijing:China Environment Press, 2012.
[14] 环境保护部, 国家质量监督检验检疫总局. 锅炉大气污染物排放标准:GB 13271-2014[S]. 北京:中国环境出版社, 2014. Ministry of Environmental Protection, General Administration of Quality Supervision, Inspection and Quarantine. Emission standard of air pollutants for boilers:GB 13271-2014[S]. Beijing:China Environment Press, 2014.
[15] 胡金榜, 王道斌, 王晋刚, 等.添加剂在喷雾干燥脱硫中的应用[J]. 化学工业与工程, 2006, (4):308-311. HU J B, WANG D B, WANG J G, et al. Application of additives in spray drying desulfurization[J]. Chemical Industry and Engineering, 2006, (4):308-311.
[16] 耿俊峰, 宋士娟, 鲍静静, 等. 应用润湿剂促进WFGD系统脱除细颗粒物的性能[J]. 化工学报, 2011, 62(4):1084-1090. GENG J F, SONG S J, BAO J J, et al. Application of wetting agent to promote the performance of fine particles in WFGD system[J]. CIESC Journal, 2011, 62(4):1084-1090.
[17] 滕斌, 高翔, 骆仲泱, 等. 分级喷水增湿对半干法烟气脱硫效率的影响[J]. 电力环境保护, 2006, (3):22-25. TENG B, GAO X, LUO Z Y, et al. Effect of water spray and humidification on the performance of semi-dry flue gas desulphurization[J]. Electric Power Environmental Protection, 2006, (3):22-25.
[18] 李大骥, 冯斌, 吴颖海, 等. 循环流化床烟气脱硫多层喷水的试验研究及其产物分析[J]. 热能动力工程, 2002, (4):349-352. LI D J, FENG B, WU Y H, et al. Experimental study and product analysis of flue gas desulfurization in circulating fluidized bed[J]. Thermal Power Engineering, 2002, (4):349-352.
[19] 周长丽, 李建锁. 表面活性剂在湿法烟气脱硫除尘中的应用[J]. 洁净煤技术, 2006, (2):72-74. ZHOU C L, LI J S. Application of surfactant in wet flue gas desulfurization and dedusting[J]. Clean Coal Technology, 2006, (2):72-74.
[20] 肖进新, 赵振国. 表面活性及应用原理[M]. 北京:化学工业出版社, 2003. XIAO J X, ZHAO Z G. Surface Activity and Application Principle[M]. Beijing:Chemical Industry Press, 2003.
[21] 王维德. 表面张力对传质过程的影响[J]. 化学工程, 2004, (2):14-17. WANG W D. Effect of surface tension on mass transfer process[J]. Chemical Engineering, 2004, (2):14-17.
[22] 袁莉莉. 半干法烟气脱硫技术研究进展[J]. 山东化工, 2009, 38(8):23-25. YUAN L L. Research progress of semi-dry FGD technology[J]. Shandong Chemical Industry, 2009, 38(8):23-25.
[23] 郭斌洲. 半干法脱硫与湿法脱硫工艺选择比较[J]. 山西焦煤科技, 2010, (B07):65-67. GUO B Z. Comparison of process options for desulphurization and wet process desulfurization[J]. Shanxi Coking Coal Technology, 2010, (B07):65-67.
[24] 王雷, 章明川, 周月桂, 等. 半干法烟气脱硫工艺探讨及其进展[J]. 锅炉技术, 2005, 36(1):70-74. WANG L, ZHANG M C, ZHOU Y G, et al. Discussion and progress of semi-dry flue gas desulphurization process[J]. Journal of Boiler Technology, 2005, 36(1):70-74.
[25] 王乃华. 新型半干法烟气脱硫的实验及机理研究[D]. 杭州:浙江大学, 2001. WANG N H. Experimental study and mechanism of new semi-dry flue gas desulphurization[D]. Hangzhou:Zhejiang University, 2001.
[26] HAO X W, MA C Y, DONG Y. Composite fluidization in a circulating fluidized bed for flue gas desulfurization[J]. Powder Technology, 2012, 215/216:46-53.
[27] 郭养富, 李立敏, 肖瑞岗. 循环流化床脱硫效率影响因素浅谈[C]//2007全国电力行业脱硫脱硝技术协作网暨技术研讨会. 2007:179-183. GUO Y F, LI L M, XIAO R G. Influence factors of the circulating fluidized bed desulfurization efficiency[C]//2007 Proceedings of the National Power Industry Desulfurization and Denitrification Technical Cooperation Network and Technology Symposium. 2007:179-183.
[28] 谷林, 张延玲, 林纲, 等. 半干法烟气脱硫机理及影响因素[J]. 过程工程学报, 2008, (S1):306-314. GU L, ZHANG Y L, LIN G, et al. Semi-dry flue gas desulfurization mechanism and influencing factors[J]. Chinese Journal of Process Engineering, 2008, (S1):306-314.
[29] 樊保国, 项光明, 祁海鹰, 等. 常温循环流化床烟气脱硫影响脱硫效率的参数及机理[J]. 燃烧科学与技术, 2001, 7(3):228-232. FAN B G, XIANG G M, QI H Y, et al. Parameters and mechanism of desulphurization efficiency in flue gas desulphurization at ambient temperature in circulating fluidized bed[J]. Journal of Combustion Science and Technology, 2001, 7(3):228-232.
[30] 徐万帮. 低水合氯化镁吸水过程物理化学性质研究[D]. 青海:中国科学院研究生院(青海盐湖研究所), 2005. XU W B. Physico-chemical properties of magnesium chloride with low hydration capacity[D]. Qinghai:Graduate University of Chinese Academy of Sciences (Qinghai Research Institute of Salt Lakes), 2005.
[31] 张永, 李文勇, 陈招妹, 等. 氯离子含量对循环半干法烟气脱硫装置操作参数的影响[J]. 电力科技与环保, 2009, 25(1):18-20. ZHANG Y, LI W Y, CHEN Z M, et al. Effect of chloride ion content on operating parameters of circulating semi-dry flue gas desulfurization[J]. Electric Power Environmental Protection, 2009, 25(1):18-20.

[1] GUO Wanwan, LI Ruyue, HUANG Jun. Copper catalyst supported on cross-linked phenanthroline for oxidative synthesis of 2,3,5-trimethyl-1,4-benzoquinone [J]. CIESC Journal, 2019, 70(3): 929-936.
[2] LI Desheng, ZHANG Chao, DENG Shihai, HU Zhifeng, LI Jinlong, LIU Yuanhui. Experimental study on effective nitrate removal from sewage by ZVI-based catalyzed reduction [J]. CIESC Journal, 2019, 70(3): 1065-1074.
[3] HE Shuai, GUO Feng, KANG Guojun, YU Jian, REN Xuefeng, XU Guangwen. Preparation of palladium-based catalysts by complexing-solvothermal method and catalytic oxidation of m-xylene [J]. CIESC Journal, 2019, 70(3): 937-943.
[4] TANG Quan, GUO Yanglong, ZHAN Wangcheng, GUO Yun, WANG Li, WANG Yunsong. Catalytic combustion of propane over PdxPty-ZSM-5/Cordierite monolithic catalyst [J]. CIESC Journal, 2019, 70(3): 944-950.
[5] WANG Chao, LI Changming, HUANGFU Lin, LI Ping, YANG Yunquan, GAO Shiqiu, YU Jian, XU Guangwen. Preparation of red mud-based catalyst and performance for trace ammonia in simulative tail gas [J]. CIESC Journal, 2019, 70(3): 1056-1064.
[6] LI Yanying, LI Xianchun. Biomass activated carbon loaded with zero-valent iron nanocrystal clusters for direct catalytic reduction of NO [J]. CIESC Journal, 2019, 70(3): 1111-1119.
[7] WANG Channa, LIU Ling, WANG Huihua, QU Tianpeng, TIAN Jun, WANG Deyong, KANG Zhenhui. Controllable preparation of Co-Fe-Pd nanoparticles and their catalytic activities toward oxygen reduction [J]. CIESC Journal, 2019, 70(1): 319-326.
[8] HOU Zhenzhong, PENG Longgui, LI Ying, LU Hai, LU Ya, XIE Xiaoqin. Interfacial self-assembly synthesis and electrochemical capacitance of hierarchical porous polypyrrole films [J]. CIESC Journal, 2018, 69(9): 4121-4128.
[9] SONG Rui, JIN Guangyuan, CUI Zhengwei, SONG Chunfang, CHEN Haiying. Dielectric properties of mixed materials in transesterification reaction system [J]. CIESC Journal, 2018, 69(8): 3670-3677.
[10] LI Guorong, ZOU Xiangda, WANG Qifan, WANG Xin, TANG Zhongzhi, ZHOU Yangjie, TANG Dian. Crystal structures, electronic structures and conductivity of Si highly doped RuO2 [J]. CIESC Journal, 2018, 69(8): 3717-3723.
[11] WANG Zongyu, KUANG Hailang, ZHANG Jifeng, JI Yulong. Removal of marine diesel engine exhaust pollutants with DOC+SCR technologies [J]. CIESC Journal, 2018, 69(7): 3249-3256.
[12] ZHANG Jie, LI Tao. Application of CFD to improve calculated process of methanation over plum-shaped catalyst [J]. CIESC Journal, 2018, 69(7): 2985-2992.
[13] TIAN Haifeng, YAO Lu, GAO Jialiang, ZHA Fei, GUO Xiaojun. Effects of silylation and organic weak alkali modified Mo/HZSM-5 on catalytic performance in non-oxidative aromatization of methane reaction [J]. CIESC Journal, 2018, 69(7): 3009-3017.
[14] TANG Weiwei, YAO Jianlong, XU Xiangsheng, YAN Xinhuan. L-alanine hydrogenation over RuPd bimetallic catalysts [J]. CIESC Journal, 2018, 69(6): 2503-2511.
[15] WANG Hongjie, GAO Yaguang, ZHAO Zilong, CHEN Guanhan, DONG Wenyi. Effects of biochar-based catalyst preparation on oxidation degradation of Ni-EDTA [J]. CIESC Journal, 2018, 69(6): 2782-2789.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!