CIESC Journal ›› 2019, Vol. 70 ›› Issue (1): 56-64.doi: 10.11949/j.issn.0438-1157.20180487

• Fluid dynamics and transport phenomena • Previous Articles     Next Articles

Evaluation research on boiling heat transfer model of CO2 in tube

Zhongyan LIU1(),Dahan SUN1,Xu JIN1(),Tianhao WANG1,Yitai MA2   

  1. 1. School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132000, Jilin, China
    2. School of Mechanical Engineering, Tianjin University, Tianjin 300072, China
  • Received:2018-05-09 Revised:2018-09-08 Online:2019-01-05 Published:2018-09-20
  • Contact: Xu JIN E-mail:llzzyy198584@126.com;jinxu7708@sina.com

Abstract:

Due to good environmental characteristics and excellent thermodynamic properties, CO2 is considered as an ideal alternative refrigerant. Compared with the traditional refrigerant, CO2 flow boiling heat transfer characteristics is very different. However, the existing heat transfer correlations are based on their respective test data fitting, because the data points are too less and the range of variable parameters is limited, the predicted results are very different. To establish the CO2 tube flow boiling heat transfer in a more comprehensive database, compare and analyze different heat transfer models, it is of great significance for deep understanding of the boiling heat transfer characteristics of CO2 in tube and study more accurate heat transfer correlation. There are six correlations analyzed by using 4040 experimental data points of CO2 flow boiling heat transfer from 24 references, the study found that for Fang (2013) correlation minimum error is 10.6%, and draw the variation of gas and liquid Reynolds number with pipe diameter, and the change of gas and liquid Reynolds number scatter plot and the plot of Nusselt number change with Bond number, it can provide insight into the CO2 tube flow boiling heat transfer characteristics and the future research a new type of heat transfer correlations for more accurate to provide the reference.

Key words: carbon dioxide, flow boiling, dry, heat transfer coefficient

CLC Number: 

  • TK 124

Table 1

Horizontal circular tube boiling heat transfer experimental data"

Ref.Diameter/mmTsat/℃Mass flux/(kg/(m2·s))

Heat flux/

(kW/m2)

Data number
[25]1.42,4.5710,15400,8007.5,4036
[2]65,10170—34010—20218
[26]9.07,14575—5003.8—64.5100
[10]6.1-15,-30100—4005—15115
[14]7.75-5—5200—50010—30100
[4]7.730—2031812.5—18.660
[27]1.5-40—0300—6007.5—30380
[28]41—15100—3002—18147
[29]45774.85
[30]1,2,3-10—1056—13355.69—34.2365
[31]1.5-40—0300—6007.5,30312
[32]45663.25
[33]41—15100—3002—18101
[34]15.345—6.315200—5003.9—24.415216
[13]0.6—35—15300—15008—30155
[18]1.42—6-30—10203,30010.1—3087
[15]0.529-10—0200—140010—301270
[35]4.57,7.7510—20400—90020—40120
[36]6-7.8—5.8200—34910.1—20.2160
[37]6-3.2,4.2201,3499.6,10.120
[38]1.5,2,3-5500,10007.2—3068

Table 2

Error of experimental data evaluated by six prediction models"

ErrorChoi[20]Wang[21]Tanaka[22]Ducoulombier[15]Fang[19]Pamitran[24]
δ1/%23.39-20.6427.326.7710.6>100
δ2/%39.2559.1135.641.9922.44>100

Fig.1

Comparison between experimental value and predicted value of CO2 heat transfer coefficient"

Fig.2

Heat transfer coefficient changes with vapor quality: expermental data vs predicted value"

Fig.3

Distribution of Nu with Bd (all)"

Fig.4

Distribution of Nu with Bd (small channel)"

Fig.5

Distribution of liquid gas Reynolds number with channel size"

Fig.6

Distribution of liquid phase Reynolds number with channel size"

Fig.7

Gas Reynolds number distribution"

Fig.8

Liquid Reynolds number distribution"

Fig.9

Laminar/turbulent flow distribution"

Fig.10

Heat transfer coefficient distribution with vapor quality in conventional channel"

Fig.11

Heat transfer coefficient distribution with vapor quality in small channel"

1 张超, 王坤. 制冷空调系统替代工质的发展现状及方向[J]. 低温与超导, 2005, 33(4): 69-72+77.
ZhangC, WangK. The development status and direction of replacing the working quality of refrigeration air-conditioning system[J]. Cryogenics and Superconductivity, 2005, 33(4): 69-72+77.
2 RinY, YongC K, MinS K, et al. Boiling heat transfer and dryout phenomenon of CO2 in a horizontal smooth tube[J]. International Journal of Heat and Mass Transfer, 2003, 45: 2353-2361.
3 GungorK E, WintertonR H S. A general correlation for flow boiling in tubes and annuli[J]. Int. J. Heat Mass Transfer, 1986, 29: 351-358.
4 SeokH Y, EunS C, YunW H, et al. Characteristics of evaporative heat transfer and pressure drop of carbon dioxide and correlation development[J]. International Journal of Refrigeration, 2004, 27: 111-119.
5 GungorK E, WintertonR H S. Simplified general correlation for saturated flow boiling and comparison with data[J]. Chem. Eng. Res. Des., 1987, 65: 148-156.
6 JungD S, MclindenM, RadermacherR, et al. A study of flow boiling heat transfer with refrigerant mixtures[J]. Int. J. Heat Mass Transfer, 1989, 32(9): 1751-1764.
7 KandlikarS G. A general correlation for saturated two-phase flow boiling heat transfer inside horizontal and vertical tubes[J]. Journal of Heat Transfer, 1990, 112: 219-228.
8 LiuZ, WintertonR H S. A general correlation for saturated and subcooled flow boiling in tubes and annuli, based on a nucleate pool boiling equation[J]. Int. J. Heat Mass Transfer, 1991, 34(11): 2759-2766.
9 HwangY, KimB H, RadermacherR. Boiling heat transfer correlation for carbon dioxide[C]//College Park (MD, USA): ⅡF-ⅡR Commission B1, with E1&E2. 1997: 81-95.
10 ParkC Y, HrnjakP S. CO2 and R410A flow boiling heat transfer, pressure drop, and flow pattern at flow temperature in a horizontal smooth tube[J]. International Journal of Refrigeration, 2007, 30: 166-178.
11 ShahM M. Chart correlation for saturated boiling heat transfer: equation and further study[J]. ASHRAE Trans., 1982, 88: 185-196.
12 WatteletJ P. Heat transfer flow regimes of refrigerants in a horizontal-tube evaporator[C]//Acrc. Tr-55. University of Illinois at Urbana-Champaign, 1994.
13 ChengL X, GherhardtR, JohnR T. New prediction methods for CO2 Evaporation inside tubes (Ⅱ): An updated general flow boiling heat transfer model based on flow patterns[J]. Int. J. Heat Mass Transfer, 2008, 51: 125-135.
14 HooK O, HakG K, GeonS R, et al. Flow boiling heat transfer characteristics of carbon dioxide in a horizontal tube[J]. Applied Thermal Engineering, 2008, 28: 1022-1030.
15 DucoulombierM, ColassonS, BonjourJ, et al. Carbon dioxide flow boiling in a single microchannel (Ⅱ): Heat transfer[J]. Experimental Thermal and Fluid Science, 2011, 35: 597-611.
16 HiharaE, TanakaS. Boiling heat transfer of carbon dioxide in horizontal tubes[C]//Proceedings of the 4th ⅡR Gustav Lorentzen Conference on Natural Working Fluids. 2000: 279-284.
17 KandlikarS G, SteinkeM E. Predicting heat transfer during flow boiling in minichannels and microchannels[J]. ASHRAE Trans., 2003, 109: 667-676.
18 FangX D, ZhouZ R, LiD K. Review of correlations of flow boiling heat transfer coefficients for carbon dioxide[J]. International Journal of Refrigeration, 2013, 36: 2017-2039.
19 FangX D. A new correlation of flow boiling heat transfer coefficients for carbon dioxide[J]. Int. J. Heat Mass Transfer, 2013, 64: 802-807.
20 ChoiK, PamitranA S, OhJ T. Two-phase flow heat transfer of CO2 vaporization in smooth horizontal minichannels[J]. International Journal of Refrigeration, 2007, 30: 767-777.
21 WangJ, OgasawaraS, HiharaE. Boiling heat transfer and air coil evaporator of carbon dioxide[C]//Proceedings of the 21st ⅡR International Congress of Refrigeration.2003.
22 TanakaS, DaigujiH, TakemukaF, et al. Boiling heat transfer of carbon dioxide in horizontal tubes[C]//Proceeding of 38th National Heat Transfer Symposium of Japan. Saitama, Japan, 2001: 899-900.
23 ChenJ C. Correlation for boiling heat transfer to saturated fluids in convective flow[J]. I&EC Process Design and Development, 1966, 5(3): 322-329.
24 PamitranA S, ChoiK, OhJ T, et al. Evaporation heat transfer coefficient in single circular small tubes for flow natural refrigerants of C3H8, NH3, and CO2[J]. Int. J. Multiphase Flow, 2011, 37: 794-801.
25 杨建超, 柳建华, 张良, 等. 二氧化碳环内沸腾传热系数关联式的分析[J]. 低温与超导, 2011, 39(11): 72-76.
YangJ C, LiuJ H, ZhangL, et al. Analysis of heat transfer correlation for CO2 in-tube flow boiling[J]. Cryogenics & Superconductivity, 2011, 39(11): 72-76.
26 ArndtE S, MatthiasK. Flow pattern and heat transfer characteristics during flow boiling of CO2 in a horizontal micro fin tube and comparison with smooth tube data[J]. International Journal of Refrigeration, 2005, 28: 1186-1195.
27 姜琳琳, 柳建华, 张良, 等. 水平微细管内CO2流动沸腾换热特性[J]. 化工学报, 2018, 69(4): 1428-1436.
JiangL L, LiuJ H, ZhangL, et al. Investigation of flow boiling heat transfer characteristics of CO2 in horizontal micro-tube[J]. CIESC Journal, 2018, 69(4): 1428-1436.
28 赵红艺. 二氧化碳在细管径内蒸发换热特性和压降的实验研究[D]. 北京: 清华大学, 2004.
ZhaoH Y. Experimental study on boiling heat transfer characteristics and pressure drop of CO2[D]. Beijing: Tsinghua University, 2004.
29 胡静, 杨俊兰, 杜明星. CO2-润滑油水平光管内流动沸腾换热特性[J]. 燃气与热力, 2013, 33(4): A13-A17.
HuJ, YangJ L, DuM X. The flow boiling heat transfer characteristics of CO2-lubricating oil in a horizontal smooth tube[J]. Gas & Heat, 2013, 33(4): A13-A17.
30 陆至羚, 柳建华, 张良, 等. 微细通道内CO2沸腾换热与干涸特性[J]. 化工进展, 2015, 34(8): 2961-2966.
LuZ L, LiuJ H, ZhangL, et al. Heat transfer and dry-out characteristics of CO2 in mini-channel[J]. Chemical Industry and Engineering Progress, 2015, 34(8): 2961-2966.
31 张良, 柳建华, 叶方平, 等. 细微通道内低温CO2流 动沸腾换热特性研究[J]. 热能动力工程, 2014, 29(3): 262-266.
ZhangL, LiuJ H, YeF P, et al. Study on heat transfer characteristics of low temperature CO2 flow in mini-channel[J]. Journal of Engineering for Thermal Energy and Power, 2014, 29(3): 262-266.
32 杨俊兰, 赵丽娜. CO2/润滑油混合物在水平管内流动沸腾换热的实验研究[J]. 流体机械, 2015, 43(11): 1-5.
YangJ L, ZhaoL N. Experimental study the flow boiling heat transfer of CO2/ lubricating oil mixture in horizontal tube[J]. Fluid Machinery, 2015, 43(11): 1-5.
33 吴晓敏, 赵红艺, 王维成, 等. CO2在细径管内蒸发换热的实验研究[J]. 工程热物理学报, 2005, 26(5): 823-825
WuX M, ZhaoH Y, WangW C, et al. Experimental study on evaporating heat transfer of CO2 in thin tube[J]. Journal of Engineering Thermophysics, 2005, 26(5): 823-825.
34 马富芹. 水平微小通道内CO2沸腾换热研究 [D]. 上海: 东华大学, 2004.
MaF Q. Boiling heat transfer of CO2 in a horizontal mini-tube[D]. Shanghai: Donghua University, 2004.
35 HooK O, ChangH S. Flow boiling heat transfer and pressure drop characteristics of in horizontal tube of 4.57 mm inner diameter[J]. Applied Thermal Engineering, 2011, 31: 163-172.
36 MastrulloR, MauroA W, RosatoA, et al. Carbon dioxide local heat transfer coefficients during flow boiling in a horizontal circular smooth tube[J]. Int. J. Heat Mass Transfer, 2009, 52: 4184-4194.
37 MastrulloR, MauroA W, RosatoA, et al. Carbon dioxide local heat transfer and pressure drops during flow boiling: assessment of predictive methods[J]. International Journal of Refrigeration, 2010, 33: 1068-1085.
38 宫小彬, 柳建华, 张良, 等. 二氧化碳管内流动沸腾换热特性实验研究进展[C]//中国制冷学会学术年会. 2009.
GongX B, LiuJ H, ZhangL, et al. Review of experimental study on in-tube carbon dioxide flow boiling heat transfer characteristics[C]//Academic Annual Meeting of China Institute of Refrigeration. 2009.
39 GaoL, TomohiroH. An experimental study on flow boiling heat transfer of carbon dioxide and oil mixtures inside a horizontal smooth tube[C]//Proceedings of ⅡR 2005 Vicenza Conference-Thermophysical Properties and Transfer of Refrigerants.Vicenza, 2005.
40 KewP A, CornwellK. Correlations for prediction of boiling heat transfer in small-diameter channels[J]. Appl. Therm. Eng., 1997, 17: 705-715.
41 ChengP, WuH Y, HongF J. Phase-change heat transfer in microsystems[J]. Heat Transfer, 2007, 129: 101-107.
42 KandlikarS G, GrandeW J. Evolution of micro-channel flow passages-thermohydraulic performance and fabrication technology[J]. Heat Transfer Eng., 2003, 24(1): 3-17.
[1] Junlan YANG, Shuying NING. Study on boiling heat transfer characteristics of CO2/ lubricating oil mixture in mini-channel tube [J]. CIESC Journal, 2019, 70(5): 1772-1778.
[2] Yexia CHAI, Huayan CHEN, Yue JIA, Dandan LI, Chunrui WU, Xiaolong LYU. Enhancement on steam dropwise condensation heat transfer with superhydrophobic surfaces of PVDF hollow fiber heat exchange tubes [J]. CIESC Journal, 2019, 70(4): 1331-1339.
[3] Bingguo ZHU, Xinming WU, Liang ZHANG, Enhui SUN, Haisong ZHANG, Jinliang XU. Flow and heat transfer characteristics of supercritical CO2 in vertical tube [J]. CIESC Journal, 2019, 70(4): 1282-1290.
[4] Yaowu WANG, Jianping PENG, Yuezhong DI, Pengcheng HAO. Mechanism of deterioration for dry barrier material in aluminum electrolysis cells [J]. CIESC Journal, 2019, 70(3): 1035-1041.
[5] Qichao XU, Jinbo JIANG, Xudong PENG, Jiyun LI, Yuming WANG. Unified model and geometrical optimization of bi-directional groove of dry gas seal based on genetic algorithm [J]. CIESC Journal, 2019, 70(3): 995-1005.
[6] Qiong HU, Yan WANG, Rong DAI, Jianjun SUN, Xiaoqing ZHENG. Performance study of arc groove dry gas seal based on orderly micro-structure [J]. CIESC Journal, 2019, 70(3): 1006-1015.
[7] Shun ZHU, Qi GUO, Dawei ZHANG, Qingchun YANG. Conceptual design and system analysis coal to ethylene glycol process integrated with efficient utilization of CO2 [J]. CIESC Journal, 2019, 70(2): 772-779.
[8] Rui MU, Gaoyang LE, Huizhong YANG. Estimation method of dissolved gas quantity in COD determination based on O3/UV [J]. CIESC Journal, 2019, 70(2): 730-735.
[9] Cailin WANG, Shuaiwei GU, Yuxing LI, Qihui HU, Lin TENG, Jinghan WANG, Hongtao MA, Datong ZHANG. Experimental study on foaming characteristics of CO2-crude oil mixture [J]. CIESC Journal, 2019, 70(1): 251-260.
[10] Yuanmo WU, Shouyu ZHANG, Hua ZHANG, Chen MU, Hao LI, Xiaobing SONG, Junfu LYU. Relationship between pore structure and moisture reabsorption of lignite dewatered by high temperature drying process [J]. CIESC Journal, 2019, 70(1): 199-206.
[11] Jingyan LI, Zhongliang LIU, Yu ZHOU, Yanxia LI. Study of thermal-hydrologic-mechanical numerical simulation model on CO2 plume geothermal system [J]. CIESC Journal, 2019, 70(1): 72-82.
[12] YAN Hongzhi, HU Bin, WANG Ruzhu. Modeling and optimization of water-to-water falling film evaporator [J]. CIESC Journal, 2018, 69(S2): 68-75.
[13] WANG Haoxian, LI Jianrui, HU Haitao, DING Guoliang, WU Chunlin, CHEN Hui, XING Zhanyang. Analysis of influence of surging on heat transfer characteristics of liquified natural gas flow boiling in channel of plate-fin heat exchanger [J]. CIESC Journal, 2018, 69(S2): 101-108.
[14] ZHOU Xinzhi, SHAO Lun, CUI Ke, YANG Yang, ZHOU Yu, ZHANG Ruobin. Research on multi-stage power control system of lignite microwave drying production line [J]. CIESC Journal, 2018, 69(S2): 274-282.
[15] LIU Haichao, SHAO Shuangquan, ZHANG Hainan, TIAN Changqing. Evaporative cooling experiment of microchannel heat exchanger in loop heat pipe [J]. CIESC Journal, 2018, 69(S2): 161-166.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LING Lixia, ZHANG Riguang, WANG Baojun, XIE Kechang. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] LEI Zhigang, LONG Aibin, JIA Meiru, LIU Xueyi. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] SU Haifeng, LIU Huaikun, WANG Fan, LÜXiaoyan, WEN Yanxuan. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] WANG Jianlin, XUE Yaoyu, YU Tao, ZHAO Liqiang. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] SUN Fubao, MAO Zhonggui, ZHANG Jianhua, ZHANG Hongjian, TANG Lei, ZHANG Chengming, ZHANG Jing, ZHAI Fangfang. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] Gao Ruichang, Song Baodong and Yuan Xiaojing( Chemical Engineering Research Center, Tianjin University, Tianjin 300072). LIQUID FLOW DISTRIBUTION IN GAS - LIQUID COUNTER - CONTACTING PACKED COLUMN[J]. , 1999, 50(1): 94 -100 .
[7] Su Yaxin, Luo Zhongyang and Cen Kefa( Institute of Thermal Power Engineering , Zhejiang University , Hangzhou 310027). A STUDY ON THE FINS OF HEAT EXCHANGERS FROM OPTIMIZATION OF ENTROPY GENERATION[J]. , 1999, 50(1): 118 -124 .
[8] Luo Xiaoping(Department of Industrial Equipment and Control Engineering , South China University of Technology, Guangzhou 510641)Deng Xianhe and Deng Songjiu( Research Institute of Chemical Engineering, South China University of Technology, Guangzhou 5106. RESEARCH ON FLOW RESISTANCE OF RING SUPPORT HEAT EXCHANGER WITH LONGITUDINAL FLUID FLOW ON SHELL SIDE[J]. , 1999, 50(1): 130 -135 .
[9] Jin Wenzheng , Gao Guangtu , Qu Yixin and Wang Wenchuan ( College of Chemical Engineering, Beijing Univercity of Chemical Technology, Beijing 100029). MONTE CARLO SIMULATION OF HENRY CONSTANT OF METHANE OR BENZENE IN INFINITE DILUTE AQUEOUS SOLUTIONS[J]. , 1999, 50(2): 174 -184 .
[10]

LI Qingzhao;ZHAO Changsui;CHEN Xiaoping;WU Weifang;LI Yingjie

.

Combustion of pulverized coal in O2/CO2 mixtures and its pore structure development

[J]. , 2008, 59(11): 2891 -2897 .