CIESC Journal ›› 2019, Vol. 70 ›› Issue (1): 10-23.doi: 10.11949/j.issn.0438-1157.20180465

• Reviews and monographs • Previous Articles     Next Articles

Research progress in extraction and recovery of lithium from hard-rock ores

Hui SU1,2,3(),Zhaowu ZHU1,2(),Lina WANG1,2,Tao QI1,2()   

  1. 1. Institute of Process Engineering, Chinese Academy of Sciences, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Beijing 100190, China
    2. Key Laboratory of Green Process and Engineering, Chinese Academy of Sciences, Beijing 100190, China
    3. School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 101408, China
  • Received:2018-05-03 Revised:2018-10-08 Online:2019-01-05 Published:2018-10-09
  • Contact: Zhaowu ZHU,Tao QI E-mail:suhuipiaoliang@163.com;zhwzhu@ipe.ac.cn;tqi@ipe.ac.cn

Abstract:

Lithium is widely used in new types of energy materials and the applications are growing fast. Lithium hard-rock ores are the main resources for lithium production. The trend of lithium recovery from the ores is to realize cleaning and effective production, and resource comprehensive utilizations. Based on the composition and structure analysis of various kinds of lithium ores, its recovery by a variety of methods, such as, typically, acidic, alkaline, salt were reviewed. Future development for the techniques of lithium recovery from ores was also discussed. It is shown that the lithium extraction by acidic methods was usually high. However, the composition of the acidic leachate was complex, resulting in a long process of purification of lithium. It also could cause environmental pollution by off-gas when processing the ores containing fluorine. Alkali and salt based processes had good lithium selectivity, but its extraction was low and the cost was high, and large amounts of solid wastes were generated difficult to store and re-use. Some other methods have both advantages and disadvantages, such as high-temperature chlorination method which has high metal recovery and ready solid residue utilization but has high corrosiveness to the equipment. Therefore, the development of new processes for extracting lithium from ore is focused on reducing the output of waste residue and achieving comprehensive recovery of associated resources.

Key words: lithiumores, lithium extraction, precipitation, recovery, pollution, comprehensive utilization

CLC Number: 

  • TF 046

Table 1

Chemical composition of lithium minerals commonly used in industry[15,16]"

MineralsChemical formulaChemical composition of minerals/%(mass)
Li2ONa2OK2ORb2OFeOSiO2Al2O3FP2O5
spodumeneLiAl(SiO3)28.030.550.48__63.628.7__
petaliteLiAlSi4O104.730.170.02__77.717.1__
lepidoliteK(Li,Al)3(Al,Si,Rb)4O10(F,OH)24.190.568.553.39_52.328.85.9_
zinnwaliditeKLiFeAl(AlSi3) O10(F,OH)22-50.1910.10.451142.821.76.1_
amblygoniteLiAl(F,OH)PO47.405.12____33.69.446.8

Table 2

Crystal structure of lithium minerals commonly used in industry[27,29,30,31,32]"

MineralsCrystal systemShapeCrystal structureStructure description
spodumenemonoclinicchainLi ions are filled between [SiO4] tetrahedral chains and [AlO6] octahedral chains
lepidolitemonocliniclamellartwo layers of [SiO4] tetrahedron and one layer of [AlO6] octahedron form a TOT-type three-layer space configuration. Li ions are located in layers to supplement charge
zinnwaliditemonocliniclamellarsequence patterns of [SiO4] tetrahedrons and [AlO6] octahedrons. Li ions are located between layers, Li and Fe can be interchanged
petalitemonoclinicrackTO4 tetrahedrons (T=Li, Al, Si) connected at top corners forming a three-dimensional skeleton
amblygonitetriclinicrack[PO4] tetrahedron and [AlO6] octahedron are connected sequentially. Li ions are placed in layers in a six-coordinate manner

Table 3

Typical composition of solid waste for lithium recovery based on acidic method[38]/%"

SiO2CaOAl2O3Fe2O3MgOMnOSO3Loss of ignition
57.683.6315.630.800.200.314.484.54

Table 4

Chemical composition of solid waste from spodumene processing by alkaline method[46]"

Li2OK2ONa2OFe2O3MgOCaOSiO2Al2O3
0.18—0.30.05—0.160.1—0.20.8—1.70.12—0.1654—5820—258—10

Fig.1

New process flow sheet for recovering K, Rb, and Cs from mother liquor obtained from lepidolite roasting treatment [66]"

Fig.2

Process flow sheet for preparing aluminum sulfate from precipitated solid using salt-roasting method for lepidolite treatment [73]"

Fig.3

Process flow sheet for recovery of Rb and Cs by carnallite formation method[59]"

Fig.4

Process flow sheet for preparing Li2CO3 and by-products from zinnwaldite by decomposition with hydrochloric acid[76]"

Fig.5

Process flow sheet for preparing Li2CO3 by direct carbonization of zinnwaldite concentrate[21]"

1 JewellS, KimballS. Mineral Commodity Summaries 2016[R]. U.S. Geological Survey: Reston VA, 2016.
2 ZhouZ Y, QinW, FeiW Y. Extraction equilibria of lithium with tributyl phosphate in three diluents[J]. Journal of Chemical and Engineering Data, 2011, 56(9): 3518-3522.
3 贺理珀, 孙淑英, 于建国. 退役锂离子电池中有价金属回收研究进展[J]. 化工学报, 2018, 69(1): 327-340.
HeL P, SunS Y, YuJ G. Review on processes and technologies for recovery of valuable metals from spent lithium-ion batteries[J]. CIESC Journal, 2018, 69(1): 327-340.
4 李芳芳, 李忠. 全球锂资源储量及碳酸锂供求状况分析[J]. 江西化工, 2016, (6): 11-13.
LiF F, LiZ. Global lithium resources reserves and analysis of lithium carbonate supply and demand[J]. Jiangxi Chemical Industry, 2016, (6): 11-13.
5 VikströmH, DavidssonS, HöökM. Lithium availability and future production outlooks[J]. Applied Energy, 2013, 110(110): 252-266.
6 SpeirsJ, ContestabileM, HouariY, et al. The future of lithium availability for electric vehicle batteries[J]. Renewable & Sustainable Energy Reviews, 2014, 35: 183-193.
7 CabezaL F, GutierrezA, BarrenecheC, et al. Lithium in thermal energy storage: a state-of-the-art review[J]. Renewable & Sustainable Energy Reviews, 2015, 42(42): 1106-1112.
8 OberJ A. Mineral Commodity Summaries 2017[R]. U.S. Geological Survey: Reston VA, 2017.
9 朱丽丽, 杨贝贝, 杨雪松. 基于复杂网络视角下中国碳酸锂国际贸易地位分析[J]. 资源与产业, 2016, 18(5): 14-20.
ZhuL L, YangB B, YangX S. China s global lithium carbonate trading position based on complex network[J]. Resources & Industries, 2016, 18(5): 14-20.
10 李神勇, 康莲薇, 刘建军, 等. 锂资源分布及提取技术研究[J]. 广东化工, 2016, 43(24): 81-82.
LiS Y, KangL W, LiuJ J, et al. Research on distribution and extraction technology of lithium resources[J]. Guangdong Chemical Industry, 2016, 43 (24): 81-82.
11 ChoubeyP K, KimM S, SrivastavaR R, et al. Advance review on the exploitation of the prominent energy-storage element: lithium(Ⅰ): From mineral and brine resources[J]. Minerals Engineering, 2016, 89: 119-137.
12 MeshramP, PandeyB D, MankhandT R. Extraction of lithium from primary and secondary sources by pre-treatment, leaching and separation: a comprehensive review[J]. Hydrometallurgy, 2014, 150: 192-208.
13 SwainB. Recovery and recycling of lithium: a review[J]. Separation & Purification Technology, 2016, 172: 388-403.
14 KeslerS E, GruberP W, MedinaP A, et al. Global lithium resources: relative importance of pegmatite, brine and other deposits[J]. Ore Geology Reviews, 2012, 48(5): 55-69.
15 LagacheM, SebastianA. Experimental study of Li-rich granitic pegmatites (Ⅱ): Spodumene + albite + quartz equilibrium[J]. American Mineralogist, 1991, 76(3): 611-616.
16 胡晓洪, 张庆今. 锂辉石的工业应用[J]. 中国陶瓷, 1995, 31(3): 37-39.
HuX H, ZhangQ J. The application of spodumene to industry[J]. China Ceramics, 1995, 31(3): 37-39.
17 WietelmannU, BauerR J. Lithium and Lithium Compounds[M]. Germany: Wiley-VCH, 2000: 22.
18 唐尧. 世界锂生产消费格局及资源安全保障分析[J]. 世界有色金属, 2015, (8): 21-25.
TangY. The world s lithium production and consumption patterns and resource security analysis[J]. World Nonferrous Metals, 2015, (8): 21-25.
19 BaiF, FengH Y, ZouS J, et al. A mineralogical study of spodumene from Guanpo pegmatites in Lushi, Henan province[J]. Acta Petrologica Et Mineralogica, 2011, 30(2): 281-285.
20 蔡艳龙, 李建武. 全球锂资源开发利用形势分析及启示[J]. 地球学报, 2017, 38(1): 25-29.
CaiY L, LiJ W. The analysis and enlightenment of exploitation situation of global lithium resources[J]. Acta Geoscientica Sinica, 2017, 38(1): 25-29.
21 MartinG, SchneiderA, VoigtW, et al. Lithium extraction from the mineral zinnwaldite(Ⅱ): Lithium carbonate recovery by direct carbonation of sintered zinnwaldite concentrate[J]. Minerals Engineering, 2017, 110: 75-81.
22 GarrettD E. Handbook of Lithium and Natural Calcium Chloride[M]. London: Elsevier, 2004: 221.
23 张玉玉, 张如柏. 湖北通城透锂长石伟晶岩中锂辉石的发现[J]. 矿物岩石, 2008, 28(3): 37-40.
ZhangY Y, ZhangR B. The discovery of spodumene in petalite pegmatite, Tong Cheng, Hubei China[J]. Journal of Mineralogy and Petrology, 2008, 28(3): 37-40.
24 HaoH, LiuZ, ZhaoF, et al. Material flow analysis of lithium in China[J]. Resources Policy, 2017, 51: 100-106.
25 唐平. 四川某锂辉石矿工艺矿物学及其提锂工艺研究[D]. 成都: 成都理工大学, 2016.
TangP. Process mineralogy and lithium extraction technology study on spodumene ore in Sichuan province[D]. Chengdu: Chengdu University of Technology, 2016.
26 游清治. 锂辉石的转型焙烧[J]. 新疆有色金属, 1989, (1): 27-32.
YouQ Z. Transformation roasting of spodumene[J]. Xinjiang Nonferrous Metals, 1989, (1): 27-32.
27 郭慧. 锂云母氟化学法提锂反应机理及浸取液硫酸盐体系成矾除铝的研究[D]. 福州: 福州大学, 2014.
GuoH. The investigation on reaction mechanism of fluorine chemical method to extract lithium from lepidolite and separation technology to recover aluminum in the leaching solution[D]. Fuzhou: Fuzhou University, 2014.
28 VieceliN, NogueiraC A, PereiraM F C, et al. Optimization of lithium extraction from lepidolite by roasting using sodium and calcium sulfates[J]. Mineral Processing & Extractive Metallurgy Review, 2016, 38(1): 10-14.
29 GuggenheimS, BaileyS W. The refinement of zinnwaldite-lM in subgroup symmetry[J]. American Mineralogist, 1977, 62: 1158-1167.
30 BeitoneL, GuillouN, MillangeF, et al. Structural characterizations of lithium gallium phosphates, analogous to the amblygonite-montebrasite series[J]. Cheminform, 2003, 4(8): 1061-1065.
31 RossN, ZhaoJ, SpencerE, et al. Petalite under pressure[J]. Acta Crystallographica, 2014, 70(a1): C76-C76.
32 MommaK, IzumiF. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data[J]. Journal of Applied Crystallography, 2011, 44(6): 1272-1276.
33 KoltsovV Y, NovikovP Y, SarychevG A, et al. Experimental investigations during the technology development of sulfuric acid processing of spodumene concentrate[J]. Tsvetnye Metally, 2016, (4): 18-22.
34 XiaoM S, WangS H, ZhangQ F, et al. Leaching mechanism of the spodumene sulphuric acid process[J]. Rare Metals, 1997, 16(1): 37-45.
35 杨晶晶, 秦身钧, 张健雅, 等. 锂提取方法研究进展与展望[J]. 化工矿物与加工, 2012, 41(6): 44-46.
YangJ J, QinS J, ZhangJ Y, et al.Research and progress on lithium extraction[J]. Industrial Minerals & Processing, 2012, 41(6): 44-46.
36 孟广寿. 矿石提锂与盐湖卤水提锂将并存发展[J]. 世界有色金属, 2008, (2): 67-69.
MengG S. Co-existence of extracting lithium from ores and salt lake brines[J]. World Nonferrous Metals, 2008, (2): 67-69.
37 费文斌. 利用锂渣代替黏土烧制水泥熟料的试验[J]. 水泥, 1999, (1): 4-106.
FeiW B. Experiment of cement clinker preparation by calcination using lithium recovery residues instead of clay[J]. Cement, 1999, (1): 4-106.
38 陈悦娣. 锂渣的综合回收利用[J]. 新疆有色金属, 2014, 37(4): 72-74.
ChenY D. Comprehensive recovery and utilisation of lithium recovery residues[J]. Xinjiang Nonferrous Metals, 2014, 37(4): 72-74.
39 吕天宝, 武文焕, 冯怡利, 等. 利用锂盐渣配制生料煅烧硅酸盐水泥熟料的方法: 106966615A[P]. 2017-07-21.
LyuT B, WuW H, FengY L, et al. A method for preparing cement clinker by calcining raw materials of lithium recovery residues: 106966615A[P]. 2017-07-21.
40 李春红, 费文斌. 锂渣在水泥工业中的应用研究[J]. 水泥技术, 2001, (5): 57-58.
LiC H, FeiW B. Lithium residue utilization in cement industry[J]. Cement Technology, 2001, (5): 57-58.
41 张兰芳, 陈剑雄, 岳瑜, 等. 锂渣高强混凝土的试验研究[J]. 新型建筑材料, 2005, (3): 29-31.
ZhangL F, ChenJ X, YueY, et al. Study on the high-strength concrete prepared with lithium slag[J]. New Building Materials, 2005, (3): 29-31.
42 翟梦怡, 赵计辉, 王栋民. 锂渣粉作为辅助胶凝材料在水泥基材料中的研究进展[J]. 材料导报, 2017, 31(5): 139-144.
ZhaiM Y, ZhaoJ H, WangD M. Applying lithium slag powders to cement-based materials as supplementary cementitious component: an overview[J].Materials Review, 2017, 31(5): 139-144.
43 RosalesG D, RuizM D C, RodriguezM H. Novel process for the extraction of lithium from beta-spodumene by leaching with HF[J]. Hydrometallurgy, 2014, 147: 1-6.
44 KumarM, BabuM N, MankhandT R, et al. Precipitation of sodium silicofluoride (Na2SiF6) and cryolite (Na3AlF6) from HF/HCl leach liquors of alumino-silicates[J]. Hydrometallurgy, 2010, 104(2): 304-307.
45 张竞争. 锂辉石氟硅酸法制备碳酸锂工艺的研究[D]. 青岛: 山东科技大学, 2014.
ZhangJ Z. Study on extraction of lithium carbonate from spodumene by H2SiF6 method[D]. Qingdao: Shandong University of Science and Technology, 2014.
46 游清治. 锂渣的综合利用[J]. 新疆有色金属, 1985, (2): 28-36.
YouQ Z. Comprehensive utilization of lithium residue[J]. Xinjiang Nonferrous Metals, 1985, (2): 28-36.
47 薛彦辉. 一种锂渣综合利用生产化工原料的方法: 103601230A[P]. 2014-02-26.
XueY H. A method for comprehensive utilization of lithium slag to produce raw chemical materials: 103601230A[P]. 2014-02-26.
48 冯恒毅. 河南官坡伟晶岩中锂辉石的矿物学及提锂工艺研究[D]. 北京: 中国地质大学, 2009.
FengH Y. Study on mineralogy and preparation of lithium carbonate of spodumene from pegmatite deposits in Guanpo Henan province[D]. Beijing: China University of Geosciences, 2009.
49 ChenY, TianQ, ChenB, et al. Preparation of lithium carbonate from spodumene by a sodium carbonate autoclave process[J]. Hydrometallurgy, 2011, 109(1): 43-46.
50 陈亚, 廖婷, 陈白珍, 等. 纯碱压煮法从锂辉石中提取锂的研究[J]. 有色金属(冶炼部分), 2011, (9): 21-32.
ChenY, LiaoT, ChenB Z, et al. Extraction of lithium from spodumene by sodium carbonate autoclave process[J]. Nonferrous Metals (Extractive Metallurgy), 2011, (9): 21-32.
51 田千秋. 锂辉石矿提取碳酸锂工艺研究[D]. 长沙: 中南大学, 2012.
TianQ Q. Research on the extraction of lithium carbonate from spodumene[D]. Changsha: Central South University, 2012.
52 OlivierC A, PannetonJ J, PerusseJ. Continuous production of lithium carbonate: GB1576130[P]. 1978-02-16.
53 ArneS K, JohanW S. Method of recovering lithium salts from lithium-containing minerals: US24041638A[P]. 1941-01-28.
54 BarbosaL I, GonzálezJ A, RuizM D C. Extraction of lithium from β-spodumene using chlorination roasting with calcium chloride[J]. Thermochimica Acta, 2015, 605: 63-67.
55 BarbosaL I, ValenteG, OroscoR P, et al. Lithium extraction from beta-spodumene through chlorination with chlorine gas[J]. Minerals Engineering, 2014, 56: 29-34.
56 BarbosaL I, ValenteN G, GonzálezJ A. Kinetic study on the chlorination of β-spodumene for lithium extraction with Cl2 gas[J]. Thermochimica Acta, 2013, 557: 61-67.
57 李根, 杨洁, 杨静. 锂云母分解及溶出锂工艺的研究进展评述[J]. 硅酸盐通报, 2017, 36(5): 1599-1604.
LiG, YangJ, YangJ. Literature review of extracting lithium from lepidolite[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(5): 1599-1604.
58 冯文平, 谢晶磊, 汤建良, 等. 硫酸浸取锂云母提锂方法的研究[J]. 精细化工中间体, 2016, 46(3): 66-69.
FengW P, XieJ L, TangJ L, et al. Study on extraction of lithium from lepidolite[J]. Fine Chemical Intermediates, 2016, 46(3): 66-69.
59 李良彬, 刘明, 彭爱平, 等. 锂云母提锂工艺及工业化应注意的问题[J]. 世界有色金属, 2014, (8): 37-39.
LiL B, LiuM, PengA P, et al. Problems in the process of lithium recovery from lepidolite and its comercialisation[J]. World Nonferrous Metals, 2014, (8): 37-39.
60 舒启溢. 锂云母浸取锂制备碳酸锂的工艺研究[D]. 南昌: 南昌大学, 2012.
ShuQ Y. Study of leaching lithium from lepidolite and preparation of lithium carbonate[D]. Nanchang: Nanchang University, 2012.
61 KuangG, LiH, HuS, et al. Recovery of aluminium and lithium from gypsum residue obtained in the process of lithium extraction from lepidolite[J]. Hydrometallurgy, 2015, 157: 214-218.
62 旷戈, 郭慧, 刘善军, 等. 锂云母矿石提锂浸取液体系中除铝的研究[J]. 稀有金属, 2014, 38(1): 102-107.
KuangG, GuoH, LiuS J, et al. Aluminum recovery in leaching solution of lepidolite after lithium extraction[J]. Chinese Journal of Raremetals, 2014, 38(1): 102-107.
63 伍习飞. 宜春锂云母提锂工艺及机理研究[D]. 长沙: 中南大学, 2012.
WuX F. Study on the mechanism of lithium extraction process of lepidolite in Yichun[D]. Changsha: Central South University, 2012.
64 杨仁武, 肖根正, 黎云龙, 等. 叔BAMBP萃取分离铷、铯新工艺[J]. 江西冶金, 1986, 6(2): 14-16.
YangR W, XiaoG Z, LiY L, et al. A new process for the separation of cesium and rhodium using tertiary BAMBP extraction[J]. Jiangxi Metallurgy, 1986, 6(2): 14-16.
65 肖艳, 王武尚, 李华. 氯铝酸离子液体催化合成t-BAMBP[J]. 核化学与放射化学, 2010, 32(2): 93-98.
XiaoY, WangW S, LiH. Synthesis of t-BAMBP in chloride-aluminium (Ⅲ) chloride ionic liquids[J]. Journal of Nuclear and Radiochemistry, 2010, 32(2): 93-98.
66 邓飞跃, 甘文文. 锂云母提锂母液中钾铷铯的综合利用[J]. 矿冶工程, 1999, 19(1): 50-52.
DengF Y, GanW W. Comprehensive utilization of potassium, rubdium and cesium in mother liquor after extracting lithium from lepidolite[J]. Mining and Metallurgical Engineering, 1999, 19(1): 50-52.
67 石颖. 石灰石法锂云母综合冶炼工艺流程[J]. 稀有金属, 1982, (3): 9-13.
ShiY. Limestone method lepidolite comprehensive smelting process[J]. Chinese Journal of Rare Metals, 1982, (3): 9-13.
68 徐瑞锋, 黄少文, 罗琦, 等. 锂云母提锂渣对水泥基装饰砂浆性能的影响[J]. 非金属矿, 2018, 41(1): 27-29.
XuR F, HuangS W, LuoQ, et al. Influenced research of lithium slag extracted from lithium mica on the properties of decorative mortar[J]. Non-Metallic Mines, 2018, 41(1): 27-29.
69 颜群轩. 锂云母中有价金属的高效提取研究[D]. 长沙: 中南大学, 2012.
YanQ X. Extraction of valuable metals from lepidolite[D]. Changsha: Central South University, 2012.
70 王丁, 陈树, 刘昕昕, 等. 锂云母碱溶法提锂新工艺研究[J]. 无机盐工业, 2014, 46(9): 26-28.
WangD, ChenS, LiuX X, et al. New process of lithium extraction from lepidolite by alkali dissolution[J]. Inorganic Chemicals Industry, 2014, 46(9): 26-28.
71 YanQ, LiX, WangZ, et al. Extraction of valuable metals from lepidolite[J]. Hydrometallurgy, 2012, s117/118(4): 116-118.
72 王林生, 汪发波, 文小强. P204萃取法对锂云母浸出液的除杂效果研究[J]. 稀有金属与硬质合金, 2013, 41(1): 24-27.
WangL S, WangF B, WenX Q. Study on impurity removal efficiency of the extraction process with P204 from lepidolite leaching solution[J]. Rare Metals Cemented Carbides, 2013, 41(1): 24-27.
73 吴宋超. 锂云母提锂一次净化渣制取硫酸铝的研究[D]. 南昌: 江西理工大学, 2011.
WuS C. Study on aluminum sulfate preparation from lithium recovry residue of lepidolite[D].Nanchang: Jiangxi University of Science and Technology, 2011.
74 YanQ X, Xin-HaiL I, WangZ X, et al. Extraction of lithium from lepidolite using chlorination roasting-water leaching process[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(7): 1753-1759.
75 仇世源, 张景怀, 阚素荣, 等. 宜春锂云母食盐压煮法制取碳酸锂新工艺[J]. 新疆有色金属, 1996, (1): 44-48.
QiuS Y, ZhangJ H, KanS R, et al. Lithium carbonate preparation from Yichun lepidolite by high pressure thermohydrolysis method with sodium chloride[J]. Xinjiang Nonferrous Metals, 1996, (1): 44-48.
76 MartinG, PätzoldC, BertauM. Integrated process for lithium recovery from zinnwaldite[J]. International Journal of Mineral Processing, 2017, 160: 8-15.
77 BertauM, VoigtW, SchneiderA, et al. Lithium recovery from challenging deposits: zinnwaldite and magnesium-rich salt lake brines[J]. Chemie Ingenieur Technik, 2017, 69(1): 11-13.
78 JandovaJ, DvorakP, VuH N. Processing of zinnwaldite waste to obtain Li2CO3[J]. Hydrometallurgy, 2010, 103(1/2/3/4): 12-18.
79 JandováJ, DvořákP, FormánekJ, et al. Recovery of rubidium and potassium alums from lithium-bearing minerals[J]. Hydrometallurgy, 2012, 119/120(5): 73-76.
80 JandovaJ, VuH N, BelkovaT, et al. Obtaining Li2CO3 from zinnwaldite wastes[J]. Ceramics-Silikaty, 2009, 53(2): 108-112.
81 SiameE, PascoeR D. Extraction of lithium from micaceous waste from china clay production[J]. Minerals Engineering, 2011, 24(14): 1595-1602.
82 SchneiderA, SchmidtH, MevenM, et al. Lithium extraction from the mineral zinnwaldite (I): Effect of thermal treatment on properties and structure of zinnwaldite[J]. Minerals Engineering, 2017, 111: 55-67.
83 SitandoO, CrouseP L. Processing of a zimbabwean petalite to obtain lithium carbonate[J]. International Journal of Mineral Processing, 2012, 102: 45-50.
84 SiegensH, RoderO. Process for the production of lithium salts: US73402734A[P]. 1936-05-12.
85 HaroldM, CohenS L, SchaferG H. Use of amblygonite as an additive in the lime-roasting of lithium-aluminosilicate ores: US54918655A[P]. 1957-01-01.
86 FrevelL K, KressleyL J. Separation of lithium from lithium bearing micas and amblygonite: US79424159A[P].1962-05-01.
[1] Hua CHEN, Xiuli LIU, Yaxing YANG, Liqiong ZHONG, Lei WANG, Na GAO. Numerical simulation of foam metal copper/paraffin phase change thermal storage process [J]. CIESC Journal, 2019, 70(S1): 86-92.
[2] Jian HAN, Xinhua LIU, Jingdong HE, Honglin LI, Nan ZHANG. Simultaneous reduction of NO x and CO emissions in domestic decoupling coal-fired stoves [J]. CIESC Journal, 2019, 70(5): 1991-1998.
[3] Rubin ZHAO, Meng CAI, Yuxia PANG. Effects of dialysis and acid precipitation treatment on physicochemical properties of alkali lignin and its lead ions removal properties [J]. CIESC Journal, 2019, 70(5): 1894-1903.
[4] Xinbo WANG, Yanping ZHANG, Xiuping LI, Rongxiang ZHAO. Preparation of EMIES/nC9H10O2-based deep eutectic solvents and its oxidative desulfurization activity [J]. CIESC Journal, 2019, 70(4): 1567-1574.
[5] Xueling LI, Xingyuan LIU, Feng ZHAO, Jianqiang ZHANG. Extraction of cadmium(Ⅱ) from aqueous solutions by DIOSO [J]. CIESC Journal, 2019, 70(4): 1464-1471.
[6] Yunbiao DUAN, Cunying XU, Xiang WANG, Hai LIU, Mengting HUANG. Synthesis of Fe3+-doped ZnO nanostructures by antisolvent precipitation method and their visible photocatalytic activity [J]. CIESC Journal, 2019, 70(3): 1198-1207.
[7] Weiqing HUANG, Pingru XU, Yu QIAN. Atmospheric environment risk analysis of oil consuming by vehicles based on FTA method: taking Hangzhou as a case study [J]. CIESC Journal, 2019, 70(2): 661-669.
[8] YAO Shouguang, HANG Jianwei, FENG Guozeng, XU Jinjin, GU Conghui. Simulation and optimization of energy utilization system of 25000 tons of LNG powered chemical tanker [J]. CIESC Journal, 2018, 69(S2): 330-340.
[9] MA Shuaijie, LIN Wensheng. Economic analysis of pressure energy utilization in natural gas distribution station [J]. CIESC Journal, 2018, 69(S2): 413-419.
[10] WU Jiandong, LIU Qiao, WANG Hao. Experimental investigation of fine particle precipitation in rectangular duct with staggered baffles [J]. CIESC Journal, 2018, 69(S1): 15-19.
[11] DU Dongxing, ZHENG Lichen, ZHANG Xu, SUN Guolong, LI Yingge, CHAO Kun. Comparative experimental studies on oil recovery characteristics of supercritical CO2 and foam fluid in porous media [J]. CIESC Journal, 2018, 69(S1): 58-63.
[12] LIU Yan, XIA Tiantian, SUN Weishi, WAN Yinhua, SHEN Fei, DENG Huining. Electrodialysis-vacuum membrane distillation integrated process to concentrate ionic liquids [J]. CIESC Journal, 2018, 69(9): 3905-3913.
[13] LI Yajuan, ZHAO Chuanqi, YANG Yuesuo, WANG Yuanyuan, SONG Xiaoming. Mechanism and model of dynamic adsorption of glyphosate contaminated water on graphene-based iron oxide composite [J]. CIESC Journal, 2018, 69(9): 3944-3953.
[14] WEN Yujuan, YANG Yuesuo, SONG Xiaoming, ZHANG Xi, LI Huizhong. Characteristics of p-nitrophenol removal by SAT system with iron oxide coated sands [J]. CIESC Journal, 2018, 69(7): 3059-3067.
[15] LI Lixin, ZHANG Si, WANG Dong, MA Fang. Recent progress on mycelial pellet [J]. CIESC Journal, 2018, 69(6): 2364-2372.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LING Lixia, ZHANG Riguang, WANG Baojun, XIE Kechang. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] LEI Zhigang, LONG Aibin, JIA Meiru, LIU Xueyi. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] SU Haifeng, LIU Huaikun, WANG Fan, LÜXiaoyan, WEN Yanxuan. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] WANG Jianlin, XUE Yaoyu, YU Tao, ZHAO Liqiang. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] SUN Fubao, MAO Zhonggui, ZHANG Jianhua, ZHANG Hongjian, TANG Lei, ZHANG Chengming, ZHANG Jing, ZHAI Fangfang. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] Gao Ruichang, Song Baodong and Yuan Xiaojing( Chemical Engineering Research Center, Tianjin University, Tianjin 300072). LIQUID FLOW DISTRIBUTION IN GAS - LIQUID COUNTER - CONTACTING PACKED COLUMN[J]. , 1999, 50(1): 94 -100 .
[7] Su Yaxin, Luo Zhongyang and Cen Kefa( Institute of Thermal Power Engineering , Zhejiang University , Hangzhou 310027). A STUDY ON THE FINS OF HEAT EXCHANGERS FROM OPTIMIZATION OF ENTROPY GENERATION[J]. , 1999, 50(1): 118 -124 .
[8] Luo Xiaoping(Department of Industrial Equipment and Control Engineering , South China University of Technology, Guangzhou 510641)Deng Xianhe and Deng Songjiu( Research Institute of Chemical Engineering, South China University of Technology, Guangzhou 5106. RESEARCH ON FLOW RESISTANCE OF RING SUPPORT HEAT EXCHANGER WITH LONGITUDINAL FLUID FLOW ON SHELL SIDE[J]. , 1999, 50(1): 130 -135 .
[9] Jin Wenzheng , Gao Guangtu , Qu Yixin and Wang Wenchuan ( College of Chemical Engineering, Beijing Univercity of Chemical Technology, Beijing 100029). MONTE CARLO SIMULATION OF HENRY CONSTANT OF METHANE OR BENZENE IN INFINITE DILUTE AQUEOUS SOLUTIONS[J]. , 1999, 50(2): 174 -184 .
[10]

LI Qingzhao;ZHAO Changsui;CHEN Xiaoping;WU Weifang;LI Yingjie

.

Combustion of pulverized coal in O2/CO2 mixtures and its pore structure development

[J]. , 2008, 59(11): 2891 -2897 .