CIESC Journal ›› 2018, Vol. 69 ›› Issue (9): 4106-4113.doi: 10.11949/j.issn.0438-1157.20180420

Previous Articles     Next Articles

Preparation of PVAm mixed matrix membranes by incorporating halloysite nanotubes for CO2/N2 separation

HOU Mengjie1, ZHANG Xinru1,2, WANG Yonghong1,2, LI Jinping1,2, LIU Chengcen1, LING Jun3   

  1. 1. College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China;
    2. Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan 030024, Shanxi, China;
    3. Technology Centre, China Tobacco Yunnan Industrial Co., Ltd., Kunming 650231, Yunnan, China
  • Received:2018-04-23 Revised:2018-06-16 Online:2018-09-05 Published:2018-07-03
  • Supported by:

    supported by the National Natural Science Foundation of China (21506140), the Joint Fund of Shanxi Provincial Coal Seam Gas(2015012009), the China Postdoctoral Science Foundation (2016M601289) and the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province.

Abstract:

The preparation of gas separation membranes with high permselectivity is the key for CO2 efficient recovery. To improve the CO2 separation performance of membrane, halloysite nanotubes (HNTs) with hollow and tubular structure were incorporated into polyvinylamine (PVAm) aqueous solution to fabricate PVAm-HNTs coating solutions. PVAm-HNTs/polysulfone (PSf) mixed matrix membranes (MMMs) were prepared by coating PVAm-HNTs solutions on PSf ultrafiltration membranes. The PSf membrane is the supporting layer, and PVAm-HNTs coating layer is the functional layer, which is the key for CO2 separation. The structure and morphology of HNTs were characterized by XRD and SEM. The morphology and structure of the membranes were analyzed by FTIR and SEM. The effects of HNTs content, feed pressure, and the thickness of PVAm-HNTs coating layer were systematically investigated by using pure CO2 and N2 pure gas. The CO2/N2[15/85(volume)] mixed gas separation performance also were investigated. The good interfacial interaction is attributed to the electrostatic attraction between PVAm and negatively charged HNTs. At testing temperature of 25℃ and feed gas pressure of 0.1 MPa, PVAm-HNTs/PSf-1%(mass) MMMs with wet coating thickness of 50 μm exhibited long-term performance stability, and the CO2separation performance maintained high CO2 permeability of 178 GPU with CO2/N2 selectivity of 83 for CO2/N2 mixed gas over 120 h.

Key words: halloysite nanotube, polyvinylamine, membranes, flue gas, CO2 capture

CLC Number: 

  • TQ028.8

[1] SCHMIDT G, ARCHER D. Climate change:too much of a bad thing[J]. Nature, 2009, 458(7242):1117-1118.
[2] POWELL C E, QIAO G G. Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases[J]. J. Membr. Sci., 2006, 279(1/2):1-49.
[3] BASU S, KHAN A L, CANO-ODENA A, et al. Membrane-based technologies for biogas separations[J]. Chem. Soc. Rev., 2010, 39(2):750-768.
[4] D'ALESSANDRO D M, SMIT B, LONG J R. Carbon dioxide capture:prospects for new materials[J]. Angew. Chem. Int. Ed., 2010, 49(35):6058-6082.
[5] GIN D L, NOBLE R D. Designing the next generation of chemical separation membranes[J]. Science, 2011, 332(6030):674-676.
[6] KOROS W J, ZHANG C. Materials for next-generation molecularly selective synthetic membranes[J]. Nat. Mater., 2017, 16(3):289-297.
[7] MERKEL T C, LIN H Q, WEI X T, et al. Power plant post-combustion carbon dioxide capture:an opportunity for membranes[J]. J. Membr. Sci., 2010, 359(1/2):126-139.
[8] ROBESON L M. The upper bound revisited[J]. J. Membr. Sci., 2008, 320(1/2):390-400.
[9] SANDERS D F, SMITH Z P, GUO R L, et al. Energy-efficient polymeric gas separation membranes for a sustainable future:a review[J]. Polymer, 2013, 54(18):4729-4761.
[10] ROBESON L M, SMITH Z P, FREEMAN B D, et al. Contributions of diffusion and solubility selectivity to the upper bound analysis for glassy gas separation membranes[J]. J. Membr. Sci., 2014, 453:71-83.
[11] DECHNIK J, GASCON J, DOONAN C J, et al. Mixed-matrix membranes[J]. Angew. Chem. Int. Ed., 2017, 56(32):9292-9310.
[12] KIM S, CHEN L, JOHNSON J K, et al. Polysulfone and functionalized carbon nanotube mixed matrix membranes for gas separation:theory and experiment[J]. J. Membr. Sci., 2007, 294(1/2):147-158.
[13] SHEN J, LIU G, HUANG K, et al. Membranes with fast and selective gas-transport channels of laminar graphene oxide for efficient CO2 capture[J]. Angew. Chem. Int. Ed., 2015, 54(2):578-582.
[14] 何玉鹏, 王志, 乔志华, 等. 含有MCM-41分子筛的混合基质复合膜用于CO2分离[J]. 化工学报, 2015, 66(10):3979-3990. HE Y P, WANG Z, QIAO Z H, et al. Novel mixed matrix composite membranes containing MCM-41 for CO2 separation[J]. CIESC Journal, 2015, 66(10):3979-3990.
[15] SABETGHADAM A, SEOANE B, KESKIN D, et al. Metal organic framework crystals in mixed-matrix membranes:impact of the filler morphology on the gas separation performance[J]. Adv. Funct. Mater., 2016, 26(18):3154-3163.
[16] YUAN P, TAN D, ANNABI-BERGAYA F. Properties and applications of halloysite nanotubes:recent research advances and future prospects[J]. Appl. Clay Sci., 2015, 112/113:75-93.
[17] LIU M X, GUO B C, ZOU Q L, et al. Interactions between halloysite nanotubes and 2,5-bis(2-benzoxazolyl) thiophene and their effects on reinforcement of polypropylene/halloysite nanocomposites[J]. Nanotechnology, 2008, 19(20):205709.
[18] LIU M X, GUO B C, DU M L, et al. The role of interactions between halloysite nanotubes and 2,2'-(1,2-ethenediyldi-4,1-phenylene) bisbenzoxazole in halloysite reinforced polypropylene composites[J]. Polym. J., 2008, 40(11):1087-1093.
[19] HASHEMIFARD S A, ISMAIL A F, MATSUURA T. Mixed matrix membrane incorporated with large pore size halloysite nanotubes (HNT) as filler for gas separation:experimental[J]. J. Colloid Interface Sci., 2011, 359(2):359-370.
[20] HASHEMIFARD S A, ISMAIL A F, MATSUURA T. Mixed matrix membrane incorporated with large pore size halloysite nanotubes (HNTs) as filler for gas separation:morphological diagram[J]. Chem. Eng. J., 2011, 172(1):581-590.
[21] ISMAIL A F, HASHEMIFARD S A, MATSUURA T. Facilitated transport effect of Ag+ ion exchanged halloysite nanotubes on the performance of polyetherimide mixed matrix membrane for gas separation[J]. J. Membr. Sci., 2011, 379(1/2):378-385.
[22] MURALI R S, PADAKI M, MATSUURA T, et al. Polyaniline in situ modified halloysite nanotubes incorporated asymmetric mixed matrix membrane for gas separation[J]. Sep. Purif. Technol., 2014, 132:187-194.
[23] LIAO J Y, WANG Z, GAO C Y, et al. A high performance PVAm-HT membrane containing high-speed facilitated transport channels for CO2 separation[J]. J. Mater. Chem. A, 2015, 3(32):16746-16761.
[24] LI Y F, WANG S F, HE G W, et al. Facilitated transport of small molecules and ions for energy-efficient membranes[J]. Chem. Soc. Rev., 2015, 44(1):103-118.
[25] 李雪琴. CO2分离膜的传递通道构建及传递过程强化[D]. 天津:天津大学, 2015. LI X Q. Constructing transport passageways and intensifying transport process of CO2 in membranes[D]. Tianjin:Tianjin University, 2015.
[26] 李奕帆. 聚氧乙烯基CO2分离膜的可控制备与传递机制强化[D]. 天津:天津大学, 2014. LI Y F. PEO-based CO2 separation membranes:controlled preparation and intensification of gas transport mechanisms[D]. Tianjin:Tianjin University, 2014.
[27] 廖家友. 分离CO2固定载体膜中高效微环境设计研究[D]. 天津:天津大学, 2015. LIAO J Y. Design and research of high efficiency microenvironment in fixed carrier membrane for CO2 separation[D]. Tianjin:Tianjin University, 2015.
[28] XIN Q P, OUYANG J Y, LIU T Y, et al. Enhanced interfacial interaction and CO2 separation performance of mixed matrix membrane by incorporating polyethylenimine-decorated metal-organic frameworks[J]. ACS Appl. Mat. Interfaces, 2015, 7(2):1065-1077.
[29] ZHANG C, WANG Z, CAI Y, et al. Investigation of gas permeation behavior in facilitated transport membranes:relationship between gas permeance and partial pressure[J]. Chem. Eng. J., 2013, 225:744-751.
[30] 张颖, 王志, 王世昌. CO2固定载体膜过程中物质间相互作用及其影响[J]. 化工学报, 2003, 54(8):1122-1127. ZHANG Y, WANG Z, WANG S C. Substance interactions and their influences in fixed carrier membrane process for CO2 separation[J]. CIESC Journal, 2003, 54(8):1122-1127.
[31] 王倩. 层间距可控的氧化石墨烯/聚乙烯胺膜的制备及CO2分离性能研究[D]. 太原:太原理工大学, 2017. WANG Q. Preparation of modified GO/PVAm membrane by adjusting go interlayer spacing for CO2 separation[D]. Taiyuan:Taiyuan University of technology, 2017.

[1] CHANG Jingcai, WANG Xiang, WANG Peng, CUI Lin, LI Jun, ZHANG Xin, MA Chunyuan. Evaporation characteristics of water film over collecting electrode in high-voltage electrical field [J]. CIESC Journal, 2019, 70(3): 865-873.
[2] ZHANG Li, WANG Wenwu, ZHANG Zhi'en, LIU Peisheng, WEN Jiangbo, DONG Liang. A waste heat recovery power generation system combined with natural gas liquefaction and CO2 capture [J]. CIESC Journal, 2019, 70(1): 261-270.
[3] PAN Peiyuan, CHEN Heng, JIAO Jian, LIANG Zhiyuan, ZHAO Qinxinq. In-plant experimental study on desulfurized flue gas corrosion [J]. CIESC Journal, 2019, 70(1): 161-169.
[4] XIE Huaqing, ZHANG Weidong, LIN Heyong, YU Qingbo. Hydrogen production via sorption-enhanced steam reforming of tar [J]. CIESC Journal, 2018, 69(S2): 466-472.
[5] HU Xiaowei, LÜ Li, LIANG Bin, QIU Liyou, YUAN Shaojun, ZHENG Dongyao. Reaction and regeneration behavior of melamine with SO2 [J]. CIESC Journal, 2018, 69(9): 4012-4018.
[6] YIN Shangyi, SONG Tao. Zhundong coal chemical looping combustion performance using CO2 as gasification agent [J]. CIESC Journal, 2018, 69(9): 3954-3964.
[7] SHEN Tianxu, WU Jian, YAN Jingchun, SHEN Laihong. Chemical looping combustion of coal in a two-stage fuel reactor [J]. CIESC Journal, 2018, 69(9): 3965-3974.
[8] XU Lingjun, WANG Shujuan. Vapor liquid equilibria and heat of desorption of CO2 in aqueous mixture of[Bmim] [BF4] and MEA [J]. CIESC Journal, 2018, 69(9): 3879-3886.
[9] LIU Dunyu, WALL Terry, STANGER Rohan. Experimental and modelling study on co-absorption of SO2 and CO2 during desulfurization process by flue gas cooler for oxy-fuel combustion flue gas [J]. CIESC Journal, 2018, 69(9): 4019-4029.
[10] HAN Tianyi, YAO Yuan, XU Jun, QI Liqiang, LI Jintao, TENG Fei. Synergetic mechanism of hygroscopic agent, surfactant and catalyst on desulfurization of flue gas circulating fluidized bed [J]. CIESC Journal, 2018, 69(9): 4044-4050.
[11] REN Xiaoshi, JIA Yue, LÜ Xiaolong, MA Shiqi, SHI Tenghua, CHEN Huayan. Enhancing mass transfer efficiency and stability of nickel ion by extraction gel membrane process conditions [J]. CIESC Journal, 2018, 69(7): 3038-3049.
[12] JI Ruijun, XU Wenqing, WANG Jian, YAN Chaoyu, ZHU Tingyu. Research progress of ozone oxidation denitrification technology [J]. CIESC Journal, 2018, 69(6): 2353-2363.
[13] MENG Qingying, CAO Yu, HUANG Yanzhao, WANG Le, LI Li, NIU Shufeng, QI Hong. Effects of process parameters on water and waste heat recovery from flue gas using ceramic ultrafiltration membranes [J]. CIESC Journal, 2018, 69(6): 2519-2525.
[14] LI Hanqing, WANG Chang'an, ZHU Chenzhao, ZHAO Lei, HAN Tao, CHE Defu. Influence of oxy-fuel atmosphere on melting behavior and microscopic physicochemical properties of Zhundong coal ash [J]. CIESC Journal, 2018, 69(6): 2632-2638.
[15] GONG Yuan, ZHOU Jiabei, ZHU Jiahua, LUO An'an, XUE Xiao, TIAN Jian. Influence of calcium/carbonate ratio on reaction-crystallization of CaSO4-CaCO3-(NH4)2CO3-H2O system [J]. CIESC Journal, 2018, 69(6): 2533-2539.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] CAO Xing,DU Wenjing,CHENG Lin. Analyses on flow and heat transfer performance and entropy generation of heat exchanger with continuous helical baffles[J]. CIESC Journal, 2012, 63(8): 2375 -2382 .
[2] ZHANG Lanhe,LI Jun,GUO Jingbo,JIA Yanping,ZHANG Haifeng. Effect of EPS on activated sludge flocculation Ability , Settleability and surface properties[J]. CIESC Journal, 2012, 63(6): 1865 -1871 .
[3] CHEN Weidong, SUN Yan. EFFECT OF ADSORPTION DENSITY ON PORE DIFFUSIVITY OF PROTEINS IN ION EXCHANGER[J]. CIESC Journal, 2003, 54(2): 215 -220 .
[4] ZHOU Xinjian, CHEN Tingkuan. DETERMINATION OF FLOW RATE COEFFICIENT OF JET EXHAUSTING ATOMIZATION NOZZLE[J]. CIESC Journal, 2002, 53(10): 1092 -1094 .
[5] SUN Qinglei, LI Wen, LI Baoqing. RELATIONSHIP BETWEEN VOLATILE YIELD AND PETROGRAPHIC ANALYSIS DURING PYROLYSIS OF SHENMU MACERALS[J]. CIESC Journal, 2003, 54(2): 269 -272 .
[6] LIU Tang, QIAN Weizhong, WANG Zhanwen, WEI Fei, JIN Yong, LI Juncheng, LI Yongdan. PREPARATION OF HYDROGEN AND CARBON NANOTUBES via METHANE DECOMPOSITION IN FLUIDIZED-BED REACTOR[J]. CIESC Journal, 2003, 54(11): 1614 -1618 .
[7] ZHAO Zongbin, LI Wen, LI Baoqing. EFFECT OF MINERAL MATTER ON RELEASE OF NO DURING COAL CHAR COMBUSTION[J]. CIESC Journal, 2003, 54(1): 100 -106 .
[8] LI Rui, XU Chunjian, ZENG Aiwu, ZHOU Ming. CFD SIMULATION OF DISTILLATION TRAY BASED ON THREE DIMENSIONAL TWO-LAYER MODEL[J]. CIESC Journal, 2003, 54(2): 159 -163 .
[9] ZHAN Shuiqing1,ZHOU Jiemin1,WU Ye2,LI Yuan1,LIANG Yannan1,YANG Ying1. Dynamic measurement of thermophysical properties of molten salt and error correction method[J]. CIESC Journal, 2012, 63(8): 2341 -2347 .
[10] HAN Jiabin, WANG Jingkang. MEASUREMENT AND CORRELATION OF SOLUBILITY OF CAFFEINE IN WATER AND ETHANOL[J]. CIESC Journal, 2004, 55(1): 125 -128 .