CIESC Journal ›› 2018, Vol. 69 ›› Issue (9): 3983-3992.doi: 10.11949/j.issn.0438-1157.20180406

Previous Articles     Next Articles

Separation of copper and arsenic in copper smelting dust by Na2S-NaOH leaching assisted with ultrasound method

YAO Yingying1, GUO Li2, HU Zhongqiu1, QUAN Qu1, DU Dongyun1   

  1. 1. Institute of Environment Engineering and Science, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, Hubei, China;
    2. State Key Laboratory of Biological Geology and Environmental Geology, China University of Geosciences, Wuhan 430074, Hubei, China
  • Received:2018-04-18 Revised:2018-06-20 Online:2018-09-05 Published:2018-07-09
  • Supported by:

    supported by the Science and Technology of Hubei Province(2014BEC029).


Selective leaching of arsenic and copper in copper smelting dust was investigated by Na2S-NaOH leaching process with assistance of ultrasound method. The results showed that ultrasound wave could enhance alkaline leaching capacity and separation of arsenic and copper. The corresponding leaching ratios of arsenic and copper reached to 88.81% and 0.025% at the condition of 5 min discharge time, 80 W discharge power, mass ratio of Na2S, NaOH to ash 0.4:1, liquid-solid ratio 20:1, temperature 75℃ and stirring speed 400 r·min-1. The leaching process with Na2S-NaOH assistant with ultrasound reduced arsenic and increase copper content in soot from 0.85% to 0.58% and from 2.21% to 2.30%, and the leaching rate of As increased 9.21%, the leaching toxicity concentration of As was reduced from 12.66 mg·L-1to 2.84 mg·L-1, compared with alkaline leaching, respectively. Kinetics of alkaline assisted with ultrasound leaching of arsenic in copper smelting dust was controlled by hybrid reaction and its leaching kinetic equation followed the reacted shrinking core model, its apparent activation energy was 0.114 kJ·mol-1, and the reaction system was balanced within 5 min. XPS, XRD and speciation analysis of heavy metals indicated that ultrasound wave was able to oxidize As(Ⅲ) to As(Ⅴ), which was propitious to leaching of arsenic. In conclusion, ultrasound wave assisted Na2S-NaOH leaching process proved to be an efficient way of removing both arsenic and copper from soot, so the soot could be further utilized after toxic content reduction.

Key words: copper smelting dust, ultrasound wave, selective leaching, separation, kinetics, interface, oxidation

CLC Number: 

  • X756

[1] MONTENEGRO V, SANO H, FUJISAWA T. Recirculation of high arsenic content copper smelting dust to smelting and converting processes[J]. Minerals Engineering, 2013, 49(8):184-189.
[2] SÁNCHEZ D L C A, SÁNCHEZ-RODAS D, GONZÁLEZ C, et al. Geochemical anomalies of toxic elements and arsenic speciation in airborne particles from Cu mining and smelting activities:influence on air quality[J]. Journal of Hazardous Materials, 2015, 291(1):18-27.
[3] MANDAL B K, SUZUKI K T. Arsenic round the world:a review[J]. Talanta, 2002, 58(1):201-235.
[4] 刘海浪, 和森, 宋向荣, 等. 铜冶炼高砷烟尘浸出特性研究[J]. 安全与环境学报, 2017, 17(3):1124-1128. LIU H L, HE S, SONG X R, et al. On the leaching ability of high arsenic smoke-dust from the copper smelting processing[J]. Journal of Safety and Environment, 2017, 17(3):1124-1128.
[5] GUO X, SHI J, YI Y, et al. Separation and recovery of arsenic from arsenic-bearing dust[J]. Journal of Environmental Chemical Engineering, 2015, 3(3):2236-2242.
[6] TONGAMP W, TAKASAKI Y, SHIBAYAMA A. Selective leaching of arsenic from enargite in Na2S-NaOH media[J]. Hydrometallurgy, 2010, 101(1):64-68.
[7] LI Y, LIU Z, LI Q, et al. Alkaline oxidative pressure leaching of arsenic and antimony bearing dusts[J]. Hydrometallurgy, 2016, 166(1):41-47.
[8] RUIZ M C, GRANDON L, PADILLA R. Selective arsenic removal from enargite by alkaline digestion and water leaching[J]. Hydrometallurgy, 2014, 150(1):20-26.
[9] LEWIS A E. Review of metal sulphide precipitation[J]. Hydrometallurgy, 2010, 104(2):222-234.
[10] 丁松君, 林宝启, 王业光. 高砷铜矿硫化钠-氢氧化钠浸出脱砷研究[J]. 有色金属(冶炼部分), 1983, (4):26-29. DING S J, LIN B Q, WANG Y G. The study of high arsenic in copper ore by Na2S-NaOH leaching[J]. Nonferrous Metals(Extractive Metallurgy), 1983, (4):26-29.
[11] 吴玉林, 徐志峰, 郝士涛. 炼铜烟灰碱浸脱砷的热力学及动力学[J]. 有色金属(冶炼部分), 2013, (4):3-7. WU Y L, XU Z F, HAO S T. Thermodynamics and kinetics of alkaline leaching of arsenic in copper smelting dust[J]. Nonferrous Metals (Extractive Metallurgy), 2013, (4):3-7.
[12] ZHANG R L, ZHANG X F, TANG S Z, et al. Ultrasound-assisted HCl-NaCl leaching of lead-rich and antimony-rich oxidizing slag[J]. Ultrasonics Sonochemistry, 2015, 27:187-191.
[13] ONCEL M S, INCE M, BAYRAMOGLU M. Leaching of silver from solid waste using ultrasound assisted thiourea method[J]. Ultrasonics Sonochemistry, 2005, 12(3):237-42.
[14] AL-MEREY R, AL-MASRI M S, BOZOU R. Cold ultrasonic acid extraction of copper, lead and zinc from soil samples[J]. Analytica Chimica Acta, 2002, 452(1):143-148.
[15] 袁明亮, 赵国魂, 邱冠周. 砷金矿与锰银矿同时浸出中的超声强化作用[J]. 过程工程学报, 2003, 3(5):409-412. YUAN M L, ZHAO G H, QIU G Z. Effect of ultrasonic wave on simultaneous leaching of Mn-containing silver ore and As-containing gold ore[J]. The Chinese Journal of Process Engineering, 2003, 3(5):409-412.
[16] NEPPOLIAN B, PARK J S, CHOI H. Effect of Fenton-like oxidation on enhanced oxidative degradation of chlorobenzoic acid by ultrasonic irradiation[J]. Ultrasonics Sonochemistry, 2004, 11(5):273-279.
[17] YIN S, PEI J, JIANG F, et al. Ultrasound-assisted leaching of rare earths from the weathered crust elution-deposited ore using magnesium sulfate without ammonia-nitrogen pollution[J]. Ultrasonics Sonochemistry, 2018, 41:156-162.
[18] 李娜, 孙竹梅, 阮福辉, 等. 三氯化铁除砷(Ⅲ)机理[J]. 化工学报, 2012, 63(7):2224-2228. LI N, SUN Z M, RUAN F H, et al. Mechanism of removing arsenic(Ⅲ) with ferric chloride[J]. CIESC Journal, 2012, 63(7):2224-2228.
[19] DENG B Q, LIN Y J. Distribution and hazard prevention of lead and arsenic in copper smelting process[J]. World Nonferrous Metals, 2017, 12(2):12-13.
[20] YANG T Z, FU X X, LIU W F, et al. Hydrometallurgical treatment of copper smelting dust by oxidation leaching and fractional precipitation technology[J]. The Journal of the Minerals, Metals & Materials Society, 2017, 69(10):1982-1986.
[21] 王倩, 郭莉, 陈绍华, 等. 辉光放电等离子体辅助碱浸铜冶炼烟灰中铜砷分离[J]. 化工学报, 2017, 68(5):1932-1939. WANG Q, GUO L, CHEN S H, et al. Separation of copper and arsenic in copper smelting dust by Na2S-NaOH leaching assisted with glow discharge plasma[J]. CIESC Journal, 2017, 68(5):1932-1939.
[22] 国家环境保护总局. 固体废物浸出毒性浸出方法硫酸硝酸法:HJ/T 299-2007[S]. 北京:中国标准出版社, 2007. General Environmental Protection Administration. Solid waste-extraction procedure for leaching toxicity-sulfuric acid & nitric acid method:HJ/T 299-2007[S]. Beijing:Standards Press of China, 2007.
[23] 国家环境保护总局. 固体废物浸出毒性浸出方法醋酸缓冲溶液法:HJ/T 300-2007[S]. 北京:中国标准出版社, 2007. General Environmental Protection Administration. Solid waste-extraction procedure for leaching toxicity-acetic acid buffer solution method:HJ/T 300-2007[S]. Beijing:Standards Press of China, 2007.
[24] 国家环境保护总局. 固体废物浸出毒性浸出方法翻转法:GB 5086.1-1997[S]. 北京:中国标准出版社, 2007. General Environmental Protection Administration. Test method standard for leaching toxicity of solid wastes-roll over leaching procedure:GB 5086.1-1997[S]. Beijing:Standards Press of China, 1997.
[25] 国家质量监督检验检疫总局, 国家标准化管理委员会. 固体废物砷的测定二乙基二硫代氨基甲酸银分光光度法:GB/T 15555.3-1995[S]. 北京:中国标准出版社, 1996. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Solid waste-determination of arsenic-silver diethyl dithiocarbamate spectrophotometric method:GB/T 15555.3-1995[S]. Beijing:Standards Press of China, 1996.
[26] 国家环保总局. 水质65种元素的测定电感耦合等离子体质谱法:HJ 700-2014[S]. 北京:中国环境出版社, 2014. Chinese Environment Protection Bureau. Water quality-determination of 65 elements-inductively coupled plasma-mass spectrometry:HJ 700-2014[S]. Beijing:China Environmental Science Press, 2014.
[27] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京:中国环境科学出版社, 2002:133-136, 210-213, 246-248. Chinese Environment Protection Bureau. Inspects and Analysis Methods of Water and Wastewater[M]. 4th ed. Beijing:China Environmental Science Press, 2002:133-136, 210-213, 246-248.
[28] CHEN W F, QU Y, XU Z H, et al. Heavy metal (Cu, Cd, Pb, Cr) washing from river sediment using biosurfactant rhamnolipid[J]. Environmental Science and Pollution Research, 2017, 24(19):16344-16350.
[30] 易宇, 石靖, 田庆华, 等. 高砷烟尘氢氧化钠-硫化钠碱性浸出脱砷[J]. 中国有色金属学报, 2015, 25(3):806-814. YI Y, SHI J, TIAN Q H, et al. Arsenic removal from high-arsenic dust by NaOH-Na2S alkaline leaching[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(3):806-814.
[30] 国家环境保护总局. 危险废物鉴别标准通则:GB 5085.7-2007[S]. 北京:中国标准出版社, 2007. General Environmental Protection Administration. Identification standards for hazardous wastes-general specifications:GB 5085.7-2007[S]. Beijing:Standards Press of China, 2007.
[31] XIE F C, LI H Y, MA Y, et al. The ultrasonically assisted metals recovery treatment of printed circuit board waste sludge by leaching separation[J]. Journal of Hazardous Materials, 2009, 170(1):430-435.
[32] AYTÜL H, VURAL G. Investigation and kinetic evaluation of the reactions of hydroxymethylfural with amino and thiol groups of amino acids[J]. Food Chemistry, 2018, 240(1):354-360.
[33] DOULAH M S. Mechanism of disintegration of biological cells in ultrasonic cavitation[J]. Biotechnology & Bioengineering, 2010, 19(5):649-660.
[34] ESKIN G I. Cavitation mechanism of ultrasonic melt degassing[J]. Ultrasonics Sonochemistry, 1995, 2(2):S137-S141.
[35] YUAN J, XIAO J, LI F C, et al. Co-treatment of spent cathode carbon in caustic and acid leaching process under ultrasonic assisted for preparation of SiC[J]. Ultrasonic Sonochemistry, 2018, 41:608-618.
[36] ZHAO Q, LIU C J, SHI P Y, et al. Sulfuric acid leaching kinetics of South African chromite[J]. International Journal of Minerals, Metallurgy and Materials, 2015, 22(3):233-240.
[37] KANG D C, ZOU Y H, CHENG Y P, et al. Effects of power ultrasound on oxidation and structure of beef proteins during curing processing[J]. Ultrasonics Sonochemistry, 2016, 33(1):47-53.
[38] LI H, ZHANG K, ZHANG X, et al. Contributions of ultrasonic wave, metal ions, and oxidation on the depolymerization of cellulose and its kinetics[J]. Renewable Energy, 2018, 126(1):699-707.
[39] FU L K, ZHANG L B, WANG S X, et al. Synergistic extraction of gold from the refractory gold ore via ultrasound and chlorination-oxidation[J]. Ultrasonics Sonochemistry, 2017, 37(1):471-477.

[1] GUO Wanwan, LI Ruyue, HUANG Jun. Copper catalyst supported on cross-linked phenanthroline for oxidative synthesis of 2,3,5-trimethyl-1,4-benzoquinone [J]. CIESC Journal, 2019, 70(3): 929-936.
[2] LI Desheng, ZHANG Chao, DENG Shihai, HU Zhifeng, LI Jinlong, LIU Yuanhui. Experimental study on effective nitrate removal from sewage by ZVI-based catalyzed reduction [J]. CIESC Journal, 2019, 70(3): 1065-1074.
[3] ZHAI Yanzhao, CAI Anjiang, ZHANG Dongpeng, HAN Chao, LI Li. Fabrication process of MEMS print head based on silicon-silicon low temperature direct bonding [J]. CIESC Journal, 2019, 70(3): 1220-1226.
[4] TIAN Tao, LIU Bing, SHI Meisheng, AN Yaxiong, MA Jun, ZHANG Yanjun, XU Xinxi, ZHANG Donghui. Experiment and simulation of PSA process for small oxygen generator with two adsorption beds [J]. CIESC Journal, 2019, 70(3): 969-978.
[5] ZENG Shaojuan, SHANG Dawei, YU Min, CHEN Hao, DONG Haifeng, ZHANG Xiangping. Applications and perspectives of NH3 separation and recovery with ionic liquids [J]. CIESC Journal, 2019, 70(3): 791-800.
[6] HE Shuai, GUO Feng, KANG Guojun, YU Jian, REN Xuefeng, XU Guangwen. Preparation of palladium-based catalysts by complexing-solvothermal method and catalytic oxidation of m-xylene [J]. CIESC Journal, 2019, 70(3): 937-943.
[7] ZHOU Xuebing, LIU Chanjuan, LUO Jinqiong, LIANG Deqing. Microscopic measurements on methane hydrate dissociation [J]. CIESC Journal, 2019, 70(3): 1042-1047.
[8] WANG Lei, FANG Guiying, YANG Qingyuan. Performance of metal-organic frameworks for CO2 capture from large-scale computational screening [J]. CIESC Journal, 2019, 70(3): 1135-1143.
[9] HU Song, LI Jinlong, LI Mujin, YANG Weisheng. Extractive refining process for production of propylene oxide with high purification [J]. CIESC Journal, 2019, 70(2): 670-677.
[10] XUE Yongfei, WANG Yalin, SUN Bei, LI Qianzhong, SUN Jiazhou. Improved state transfer algorithm-based kinetics parameter estimation for cascaded plug flow reactors [J]. CIESC Journal, 2019, 70(2): 607-616.
[11] YIN Fei, WANG Cui, TONG Shaoping. Treatment of acid red 73 by persulfate in the presence of rGO-Fe3O4 composite [J]. CIESC Journal, 2019, 70(1): 207-213.
[12] WANG Fayang, DU Jun, DAI Lu, WU Haichao, WANG Youyong, SONG Yongming. Effect of divinylbenzene-assisted maleic anhydride grafted poly(lactic acid) on properties of microcrystalline cellulose/poly(lactic acid) composites [J]. CIESC Journal, 2019, 70(1): 327-335.
[13] WANG Cailin, GU Shuaiwei, LI Yuxing, HU Qihui, TENG Lin, WANG Jinghan, MA Hongtao, ZHANG Datong. Experimental study on foaming characteristics of CO2-crude oil mixture [J]. CIESC Journal, 2019, 70(1): 251-260.
[14] WANG Zizong, LIU Hongqian, WANG Jiming. Research and optimization of separation technology of methanol to propylene [J]. CIESC Journal, 2019, 70(1): 136-145.
[15] LI Changhui, MENG Ling, GUI Xia, YUN Zhi. A method of extraction and separation of oridonin [J]. CIESC Journal, 2018, 69(S2): 240-245.
Full text



No Suggested Reading articles found!