CIESC Journal ›› 2018, Vol. 69 ›› Issue (9): 4121-4128.doi: 10.11949/j.issn.0438-1157.20180347

Previous Articles     Next Articles

Interfacial self-assembly synthesis and electrochemical capacitance of hierarchical porous polypyrrole films

HOU Zhenzhong, PENG Longgui, LI Ying, LU Hai, LU Ya, XIE Xiaoqin   

  1. College of Material Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, Shaanxi, China
  • Received:2018-04-02 Revised:2018-06-20 Online:2018-09-05 Published:2018-07-03
  • Supported by:

    supported by the Key Research and Development Program of Shaanxi Province(2017GY-133), the Special Research Project of Shaanxi Provincial Department of Education(17JK0512) and the National Natural Science Foundation of China(51604221).


Hierarchical porous polypyrrole films have been successfully prepared by interfacial self-assembly polymerization with assistance of the long-chain surfactant OP10. The molecular structure, micromorphology and electrochemical performance of obtained polypyrrole were characterized. The results showed that introducing OP10 into interfacial polymerization had no effect on the molecular structure of obtained polypyrrole but a significant impact on its micromorphology. When the dosage of OP10 was optimized at 0.02 g, polypyrrole could self-assemble to form a hierarchical porous structure including nanopores (~100 nm), submicron pores (200-1000 nm) and micron pores (1-3.5 μm). Because of relatively larger active surface area and higher total pore volume, hierarchical porous polypyrrole, as the electrode material, possessed a maximum specific capacitance up to 357 F·g-1 which is 70% higher than that prepared by traditional interfacial synthesis at the same conditions. Furthermore, 87.6% of the initial specific capacitance was still retained even after 2000 charge-discharge cycles, indicating the excellent cycling stability of the prepared polypyrrole.

Key words: interfacial polymerization, polypyrrole, surfactants, microstructure, self-assembly, electrochemistry

CLC Number: 

  • TQ630.1

[1] SNOOK G A, KAO P, BEST A S. Conducting polymer based supercapacitor devices and electrodes[J]. J. Power Sources, 2011, 196(1):1-12.
[2] WAN G, ZHANG L, ZHANG J. A review of electrode materials for electrochemical supercapacitors[J]. Chem. Soc. Rev., 2012, 43(18):797-828.
[3] HUGHES M, CHEN G Z, SHAFFER M S P, et al. Controlling the nanostructure of electrochemically grown nanoporous composites of carbon nanotubes and conducting polymers[J]. Compos. Sci. Technol., 2004, 64(15):2325-2331.
[4] SHARMA R K, RASTOGI A C, DESU S B. Manganese oxide embedded polypyrrole nanocomposites for electrochemical supercapacitor[J]. Electrochim. Acta, 2008, 53(26):7690-7695.
[5] SNOOK G A, BEST A S. Co-deposition of conducting polymers in a room temperatureionic liquid[J]. J. Mater. Chem., 2009, 19(24):4248-4254.
[6] AFZAL A, ABUILAIWI F A, HABIB A, et al. Polypyrrole/carbon nanotube supercapacitors:technological advances and challenges[J]. J. Power Sources, 2017, 352:174-186.
[7] 杜伟, 鞠翔宇, 王美丽, 等. 石墨烯/聚吡咯导电复合材料超级电容器电极的制备研究[J]. 功能材料, 2017, 48(1):1034-1037. DU W, JU X Y, WANG M L, et al. Study on the preparation of graphene/polypyrrole conductive composites supercapacitor electrode[J]. J. Funct. Mater., 2017, 48(1):1034-1037.
[8] LEE H, CHO M S, KIM I H, et al. RuOx/polypyrrole nanocomposite electrode for electrochemical capacitors[J]. Synth. Met., 2010, 160(9/10):1055-1059.
[9] WEI H, HE C, LIU J, et al. Electropolymerized polypyrrole nanocomposites with cobalt oxide coated on carbon paper for electrochemical energy storage[J]. Polymer, 2015, 67(1):192-199.
[10] ZHANG J, LIU Y, GUAN H, et al. Decoration of nickel hydroxide nanoparticles onto polypyrrole nanotubes with enhanced electrochemical performance for supercapacitors[J]. J. Alloys Compd., 2017, 721:731-740.
[11] SHARMA R K, RASTOGI A C, DESU S B. Pulse polymerized polypyrrole electrodes for high energy density electrochemical supercapacitor[J]. Electrochem. Commun., 2008, 10(2):268-272.
[12] CHEN S, LIU H, WANG Y, et al. Electrochemical capacitance of spherical nanoparticles formed by electrodeposition of intrinsic polypyrrole onto Au electrode[J]. Electrochim. Acta, 2017, 232:72-79.
[13] SHI Y, PAN L J, LIU B R, et al. Nanostructured conductive polypyrrole hydrogels as high-performance, flexible supercapacitor electrodes[J]. J. Mater. Chem. A, 2014, 2(17):6086-6091.
[14] 王亮, 丁春梅, 朱英, 等. 超疏水导电聚苯胺的界面聚合[J]. 高等学校化学学报, 2012, 33(6):1355-1359. WANG L, DING C M, ZHU Y, et al. Superhydrophobic conducting polyaniline prepared via interfacial polymerization[J]. Chem. J. Chinese Univ., 2012, 33(6):1355-1359.
[15] 陈祥凤, 姜均涛. 界面聚合法制备管状聚苯胺/聚苯胺包覆镍纳米复合材料及其电磁特性[J]. 材料导报, 2016, 30(S2):45-48. CHEN X F, JIANG J T. Synthesis of tube-polyaniline/polyaniline coated Ni nanoparticle composite by a simple interface polarization process and their electromagnetic properties[J]. Mater. Rev., 2016, 30 (S2):45-48.
[16] DALLAS P, GEORGAKILAS V. Interfacial polymerization of conductive polymers:generation of polymeric nanostructures in a 2-D space[J]. Adv. Colloid Interface Sci., 2015, 224:46-61.
[17] BORA C, DOLUI S K. Fabrication of polypyrrole/graphene oxide nanocomposites by liquid/liquid interfacial polymerization and evaluation of their optical, electrical and electrochemical properties[J]. Polymer, 2012, 53(4):923-932.
[18] HOU L, YUAN C, LI D, et al. Water/ionic liquid/organic three-phase interfacial synthesis of coral-like polypyrrole toward enhanced electrochemical capacitance[J]. Electrochim. Acta, 2011, 56(17):6049-6054.
[19] 朱英, 万梅香, 江雷. 聚苯胺微/纳米结构及其应用[J]. 高分子通报, 2011, (10):15-32. ZHU Y, WAN M X, JIANG L. Self-asseblied polyaniline micro/nanostructures and their applications[J]. Polym. Bull., 2011, (10):15-32.
[20] PRATHAP M U, THAKUR B, SAWANT S N, et al. Synthesis of mesostructured polyaniline using mixed surfactants, anionic sodium dodecylsulfate and non-ionic polymers and their applications in H2O2 and glucose sensing[J]. Colloids Surf. B, 2012, 89(1):108-115.
[21] JAIN D, HASHMI S A, KAUR A. Surfactant assisted polyaniline nanofibres-reduced graphene oxide (SPG) composite as electrode material for supercapacitors with high rate performance[J]. Electrochim. Acta, 2016, 222:570-579.
[22] 后振中, 杨庆浩, 刘俊. 界面聚合自组装合成三维多孔网络状聚邻甲基苯胺[J]. 功能高分子学报, 2016, 29(3):318-322. HOU Z Z, YANG Q H, LIU J. Self-assembly synthesis of 3D porous network poly(o-toluidine) via interfacial polymerization[J]. J. Func. Polym., 2016, 29(3):318-322.
[23] LIU P, WANG X, LI H. Preparation of carboxylated carbon nanotubes/polypyrrole composite hollow microspheres via chemical oxidative interfacial polymerization and their electrochemical performance[J]. Synth. Met., 2013, 181(5):72-78.
[24] LEI W, HE P, WANG Y, et al. Soft template interfacial growth of novel ultralong polypyrrole nanowires for electrochemical energy storage[J]. Electrochim. Acta, 2014, 132(3):112-117.
[25] 黄天柱, 杨庆浩, 屠钟艺, 等. 分形结构聚吡咯膜的界面聚合与电容特性表征[J]. 高分子材料科学与工程, 2015, 2(31):41-45. HUANG T Z, YANG Q H, TU Z Y, et al. Interfacial polymerization and capacitive properties of multifractal dimensions polypyrrole film[J]. Highpolymer Mater. Sci. & Eng., 2015, 2(31):41-45.
[26] LIU C, HAN G, CHANG Y, et al. High-performance supercapacitors based on the reduced graphene oxide hydrogels modified by trace amounts of benzenediols[J]. Chem. Eng. J., 2017, 328:25-34.
[27] LIU J, WAN M X. Synthesis, characterization and electrical properties of microtubules of polypyrrole synthesized by a template-free method[J]. J. Mater. Chem., 2001, 11(2):404-407.
[28] SHEN M, HAN Y, LIN X, et al. Preparation and electrochemical performances of porous polypyrrole film by interfacial polymerization[J]. J. Appl. Polym. Sci., 2013, 127(4):2938-2944.
[29] ?IRI?-MARJANOVI? G, MENTUS S, PAŠTI I, et al. Synthesis, characterization, and electrochemistry of nanotubular polypyrrole and polypyrrole-derived carbon nanotubes[J]. J. Phys. Chem. C, 2014, 118(27):14770-14784.
[30] RANA U, CHAKRABARTI K, MALIK S. In situ preparation of fluorescent polyaniline nanotubes doped with perylene tetracarboxylic acids[J]. J. Mater. Chem., 2011, 21(30):11098-11100.
[31] MOLINA J, ZILLE A, FERNANDEZ J, et al. Conducting fabrics of polyester coated with polypyrrole and doped with graphene oxide[J]. Synth. Met., 2015, 204:110-121.
[32] WANG Z L, HE X J, YE S H, et al. Design of polypyrrole/polyaniline double-walled nanotube arrays for electrochemical energy storage[J]. ACS Appl. Mater. Interfaces, 2014, 6(1):642-647.
[33] GUPTA S. Hydrogen bubble-assisted syntheses of polypyrrole micro/nanostructures using electrochemistry:structural and physical property characterization[J]. J. Raman Spectrosc, 2008, 39(10):1343-1355.
[34] BAI N, XU Z, TIAN Y, et al. Tailorable polypyrrole nanofilms with exceptional electrochemical performance for all-solid-state flexible supercapacitors[J]. Electrochim. Acta, 2017, 249:360-368.
[35] WANG J, XU Y L, YAN F, et al. Template-free prepared micro/nanostructured polypyrrole with ultrafast charging/discharging rate and long cycle life[J]. J. Power Sources, 2011, 196(4):2373-2379.
[36] 马国富, 牟晶晶, 张稚国, 等. 聚吡咯/海藻酸钠纳米球的制备及其应用于高性能超级电容器[J]. 物理化学学报, 2013, 29(11):2385-2391. MA G F, MU J J, ZHANG Z G, et al. Preparation of polypyrrole/sodium alginate nanospheres and their application for high-performance supercapacitors[J]. Acta Phys. -Chim. Sin., 2013, 29(11):2385-2391.
[37] RAMYA R, SIVASUBRAMANIAN R, SANGARANARAYANAN M V. Conducting polymers-based electrochemical supercapacitors-progress and prospects[J]. Electrochim. Acta, 2013, 101(7):109-129.
[38] ZHANG F, XIAO F, DONG Z H, et al. Synthesis of polypyrrole wrapped graphene hydrogels composites as supercapacitor electrodes[J]. Electrochim. Acta, 2013, 114:125-132.
[39] LI Y Z, ZHAO X, XU Q, et al. Facile preparation and enhanced capacitance of the polyaniline/sodium alginate nanofiber network for supercapacitors[J]. Langmuir, 2011, 27(10):6458-6463.
[40] YANG Q H, HOU Z Z, HUANG T Z. Self-assembled polypyrrole film by interfacial polymerization for supercapacitor applications[J]. J. Appl. Polym. Sci., 2015, 132(11):41615.
[41] HOU Z Z, LU H, YANG Q H, et al. Micromorphology-controlled synthesis of polypyrrole films by using binary surfactant of Span80/OP10via interfacial polymerization and their enhanced electrochemical capacitance[J]. Electrochim. Acta, 2018, 265:601-608.
[42] SHI Y, PENG L, DING Y, et al. Nanostructured conductive polymers for advanced energy storage[J]. Chem. Soc. Rev., 2015, 44(19):6684-6696.

[1] ZHANG Yating, ZHANG Kaibo, JIA Kaili, HE Xinfu, LIU Guoyang, WANG Wei, ZHANG Yongling, QIU Jieshan. Preparation and lithium storage properties of flexible self-standing PDDA-Si/G nanocomposite film [J]. CIESC Journal, 2019, 70(3): 1144-1151.
[2] WANG Kai, WANG Dewu, HOU Deyin, YUAN Ziyi, WANG Jun. Fabrication of PVDF-SiO2/PVSQ superhydrophobic compositemembrane via self-assembly with anti-fouling property for membrane distillation [J]. CIESC Journal, 2019, 70(1): 298-308.
[3] LUO Miaomiao, GUO Ning, XU Yi, LIU Daoping. Effects of graphene oxide on crystallization behavior of VS55 during cooling and warming [J]. CIESC Journal, 2019, 70(1): 370-378.
[4] WANG Channa, LIU Ling, WANG Huihua, QU Tianpeng, TIAN Jun, WANG Deyong, KANG Zhenhui. Controllable preparation of Co-Fe-Pd nanoparticles and their catalytic activities toward oxygen reduction [J]. CIESC Journal, 2019, 70(1): 319-326.
[5] DING Jiao, YIN Yaoqi, BAI Yaohui, ZHOU Xiangyang, LIU Qihai, YIN Guoqiang. Fabrication and performance of NiO-BZCYYb anode-supported solid oxide fuel cells (SOFCs) by in-situ dip coating technique [J]. CIESC Journal, 2018, 69(S1): 136-142.
[6] CHEN Yufei, GENG Chengbao, CHU Hongyue, WANG Botao, GUO Hongyuan, YUE Chunyan. Micro-morphology and properties of modified MMT/PES-MBAE composite [J]. CIESC Journal, 2018, 69(S1): 148-154.
[7] SONG Dihui, AN Luyang, ZHANG Litao, ZHANG Yafeng, XU Xinwei, WANG Yunan, WEI Huangzhao. Optimization of electrochemical coupling system process for coking waste water pretreatment by response surface method [J]. CIESC Journal, 2018, 69(9): 4001-4011.
[8] HAN Tianyi, YAO Yuan, XU Jun, QI Liqiang, LI Jintao, TENG Fei. Synergetic mechanism of hygroscopic agent, surfactant and catalyst on desulfurization of flue gas circulating fluidized bed [J]. CIESC Journal, 2018, 69(9): 4044-4050.
[9] ZHANG Jianwen, SU Guoqing, JIANG Aiguo. Corrosion failure mechanism of return pipeline elbow of regeneration tower in LPG desulfurization unit [J]. CIESC Journal, 2018, 69(8): 3537-3547.
[10] HU Mingtao, JU Pengfei, ZHAO Xuhui, TANG Yuming, ZUO Yu. Effects of different accelerated tests on failure process of epoxy/polyurethane coating [J]. CIESC Journal, 2018, 69(8): 3548-3556.
[11] WENG Chengjie, SHI Yexun, HE Dafang, SHEN Liming, BAO Ningzhong. Hydrothermal synthesis of reduced graphene oxide with tunable conductivity [J]. CIESC Journal, 2018, 69(7): 3263-3269.
[12] CHEN Zhanghao, MA Hongfang, ZHU Hanfei, WANG Xiaodan, LIU Xinxin, XU Zhaogui, YANG Juanjuan. Electrochemical properties of straw-based carbon materials in Li2SO4 electrolyte [J]. CIESC Journal, 2018, 69(7): 3293-3299.
[13] XIA Dahai, SONG Shizhe, WANG Jihui. Chaos analysis of electrochemical noise and its application in localized corrosion detection [J]. CIESC Journal, 2018, 69(4): 1569-1577.
[14] HUANG Li. Preparation and properties of paraffin/water phase change emulsion [J]. CIESC Journal, 2018, 69(4): 1749-1757.
[15] ZHOU Yixuan, WANG Zhi, DONG Chenxi, WANG Yao, WANG Jixiao. Biguanidine functionalized polyvinylamine modified reverse osmosis membrane with improved anti-bacterial property [J]. CIESC Journal, 2018, 69(2): 858-865.
Full text



No Suggested Reading articles found!