CIESC Journal ›› 2019, Vol. 70 ›› Issue (1): 161-169.doi: 10.11949/j.issn.0438-1157.20180328

• Surface and interface engineering • Previous Articles     Next Articles

In-plant experimental study on desulfurized flue gas corrosion

Peiyuan PAN(),Heng CHEN,Jian JIAO,Zhiyuan LIANG,Qinxin ZHAO()   

  1. Key Laboratory of Thermo-Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China
  • Received:2018-03-27 Revised:2018-06-12 Online:2019-01-05 Published:2018-10-29
  • Contact: Qinxin ZHAO E-mail:ppy917@163.com;zhaoqx@xtju.edu.cn

Abstract:

Based on the need to increase the height of the exhaust plume and the whitening of the flue gas, the wet flue gas after the wet desulfurization of the flue gas of the coal-fired boiler must be properly disposed. However, the wet flue gas after wet desulfurization is very corrosive and will cause serious corrosion to downstream equipment. In this paper, in-plant corrosion tests were conducted in the flue after the wet desulphurization system in a 91 MW coal-fired travelling grate heating boiler. Five common corrosion-resistant steels including ND steel, 304 L, 316 L, 2205 and 2507 were tested and then evaluated. According to the results, surface temperature of the steel was the key factor in corrosion process. As the surface temperature increased, corrosion of the steels was first exacerbated due to the increase in Cl? concentration in the deposits and then mitigated due to the lack of the electrolyte.

Key words: coal combustion, deposition, flue gas, corrosion, flue gas reheater, exhaust fumetransparentization

CLC Number: 

  • TK 16

Fig.1

Double-tube flue gas corrosion testing equipment(unit: mm)"

Fig.2

Testing position of field corrosion test"

Table 1

Parameters of flue gas at testing position"

表压力/PaSO2/(mg?m?3)NOx/(mg?m?3)O2/%(vol)水蒸气/%(vol)温度/℃PM/(mg?m?3)
?1218~?72432.3~67.9147.8~192.24.3~6.87.4~10.545.4~51.19.1~13.7

"

pH悬浮物/(mg?L?1)Na+/(mg?L?1)Ca2+/(mg?L?1)Mg2+/(mg?L?1)SO42?/(mg?L?1)Cl?/(mg?L?1)NO3?/(mg?L?1)
5.232288630.0699.21791103182316761.2

Table 3

Chemical compositions of testing steels/%(mass)"

实验钢材CSiMnPSNiCrCuMoNSbFe
ND钢0.0780.260.480.0120.0100.900.370.060Bal.
304L0.0190.361.280.0290.0048.1518.140.09Bal.
316L0.0200.401.450.0180.00210.7316.970.122.47Bal.
22050.0160.371.120.0260.0015.7422.060.243.130.17Bal.
25070.0180.250.770.0150.0017.0825.180.213.890.27Bal.

Fig.3

Appearances of testing steels after corrosion tests of different periods without circulating water"

Fig.4

Appearances of testing steels after 72 h corrosion tests at different circulating water temperatures"

Table 4

Composition of deposits and corrosion products on steel surfaces/% (mass)"

循环水温度类型FeCrNiOSClCaAlSiMg
50℃ND钢表面沉积物14.6956.1314.4213.230.870.66
ND钢表面腐蚀产物51.3735.1513.48
2205表面沉积物49.5820.8024.642.652.33
60℃ND钢表面沉积物16.8639.3412.449.7315.460.731.164.28
ND钢表面腐蚀产物53.7828.603.5612.911.15
304L表面沉积物8.482.331.0729.1817.0210.0322.692.376.83
304L表面腐蚀产物41.5411.623.8319.732.3713.262.784.87
316L表面沉积物4.8952.8315.182.3219.883.681.22
316L表面腐蚀产物50.809.043.8618.533.977.542.061.023.18
2205表面沉积物49.239.644.2416.745.949.134.081.41
2507表面腐蚀产物6.371.3340.2815.358.9619.731.492.513.98
70℃ND钢表面沉积物7.4538.1514.5013.5219.110.671.465.14
ND钢表面腐蚀产物51.7132.363.768.893.28
304L表面沉积物4.7443.3414.8814.4616.216.37
304L表面腐蚀产物43.8411.583.0318.881.0014.541.905.23
316L表面沉积物3.4738.3416.2912.0219.872.731.945.34
316L表面腐蚀产物43.388.332.9130.934.0210.43
2205表面腐蚀产物42.298.253.9718.245.3510.607.941.41
80℃ND钢表面沉积物6.8646.5519.565.7418.910.570.551.26
ND钢表面腐蚀产物61.3828.843.026.76
316L表面沉积物11.5145.6311.323.2817.032.114.184.94

Fig.5

Microstructure of testing steels at 50℃"

Fig.6

Microstructure of testing steels at 60℃"

Fig.7

Microstructure of testing steels at 70℃"

Fig.8

Microstructure of testing steels at 80℃"

Fig.9

Average thicknesses of corrosion layers of ND steel after 72 h corrosion tests at different circulating water temperatures"

Fig.10

Changing process of droplets in desulphurized flue gas when being heated"

Fig.11

Deposition and corrosion characteristics of desulphurized flue gas at different circulating water temperatures"

Fig.12

Failure of passive film induced by Cl? on the surface of stainless steels"

1 SrivastavaR K, JozewiczW. Flue gas desulfurization: the state of the art[J]. Journal of the Air & Waste Management Association, 2001, 51(12): 1676-1688.
2 赵钦新. 我国工业锅炉发展回顾与“十二五”展望[J]. 工业锅炉, 2011, (6): 1-8.
ZhaoQ X. Reviews and prospects in China s industrial boiler development[J]. Industrial Boiler, 2011, (6): 1-8.
3 李文艳, 王冀星, 车建炜. 湿法脱硫烟气湿排问题分析[J]. 中国电机工程学报, 2007, 27(14): 36-40.
LiW Y, WangJ X, CheJ W. Analysis on corresponding problems of WFGD flue gas wet emission[J]. Proceedings of the CSEE, 2007, 27(14): 36-40.
4 马修元, 惠润堂, 杨爱勇, 等. 湿烟羽形成机理与消散技术数值分析[J]. 科学技术与工程, 2017, 17(22): 220-224.
MaX Y, HuiR T, YangA Y, et al. Numerical analysis of wet plume formation mechanism and dissipation technique[J]. Science Technology and Engineering, 2017, 17(22): 220-224.
5 马修元, 惠润堂, 杨爱勇. 湿烟羽消散技术对污染物扩散特性的影响[J]. 环境工程技术学报, 2017, 7(5): 533-538.
MaX Y, HuiR T, YangA Y. Effects of wet plume elimination technology on pollutants diffusion[J]. Journal of Environmental Engineering Technology, 2017, 7(5): 533-538.
6 顾咸志. 湿法烟气脱硫装置烟气换热器的腐蚀及预防[J]. 中国电力, 2006, 39(2): 86-91.
GuX Z. Corrosion and protection on the GGH of flue gas desulphurization equipment[J]. Electric Power, 2006, 39(2): 86-91.
7 刘宇钢, 罗志忠, 陈刚, 等. 低温省煤器及MGGH运行中存在典型问题分析及对策[J]. 东方电气评论, 2016, 30(2): 31-35.
LiuY G, LuoZ Z, ChenG, et al. Cause analyses on typical operational problems of low temperature economizer and MGGH and proposed countermeasures[J]. Dongfang Electric Review, 2016, 30(2): 31-35.
8 DarowickiK, KrakowiakS. Durability evaluation of Ni-Cr-Mo super alloys in a simulated scrubbed flue gas environment[J]. Anti-Corrosion Methods and Materials, 1999, 46(1): 19-22.
9 CrumJ R, ShoemakerL E, StiltnerG. The role of nickel alloys in fighting corrosion in wet limestone FGD systems[C]//CORROSION 96, NACE International, 1996.
10 JansenP, HansenV, JensenT. Corrosion experience with carbon steel in spray absorption FGD plant[J]. Materials & Corrosion, 1992, 43(6): 310-315.
11 DahlL. Corrosion in flue gas desulfurization plants and other low temperature equipment[J]. Materials & Corrosion, 1992, 43(6): 298-304.
12 ShoemakerL E, CrumJ R. Experience in effective application of metallic materials for construction of FGD systems[R]. Special Metals, 2010.
13 PetterssonR, EkmanS, BergquistA, et al. Corrosion of austenitic and duplex stainless steels in flue gas cleaning systems for waste combustion processes[C]//CORROSION 2013. NACE International, 2013.
14 赵阳, 梁磊, 张建良, 等. 湿法脱硫烟气系统腐蚀环境及ND钢与316L不锈钢的耐蚀性能比较[J]. 上海电力学院学报, 2016, 32(3): 216-220.
ZhaoY, LiangL, ZhangJ L, et al. Flue gas wet desulphurization system corrosion environment and the comparison of ND steel and 316L corrosion resistance[J]. Journal of Shanghai University of Electric Power, 2016, 32(3): 216-220.
15 KimM T, ChangS Y, OhO Y, et al. Failure analysis of enamel-coated carbon steel heating elements of gas-gas heater for flue gas desulfurization system[J]. Engineering Failure Analysis, 2007, 14(4): 686-693.
16 PanP Y, ChenH, LiangZ Y, et al. Experimental study on corrosion of steels for flue gas reheaters in a coal-fired power plant[J]. Applied Thermal Engineering, 2017, 115: 267-279.
17 赵钦新, 周屈兰. 工业锅炉节能减排现状、存在问题及对策[J]. 工业锅炉, 2010, (1): 1-6.
ZhaoQ X, ZhouQ L. Solutions, questions and status of China s industrial boiler[J]. Industrial Boiler, 2010, (1): 1-6.
18 赵钦新, 杨文君, 孙一睿, 等. 燃煤工业锅炉污染物协同治理关键技术[J]. 工业锅炉, 2015, (6): 1-9.
ZhaoQ X, YangW J, SunY R, et al. Key technologies of multi-pollutants synergia control in coa1-fired industrial boiler[J]. Industrial Boiler, 2015, (6): 1-9.
19 莫华, 朱杰, 黄志杰, 等. 超低排放下不同湿法脱硫技术脱除SO3效果测试与分析[J]. 中国电力, 2017, 50(3): 46-50.
MoH, ZhuJ, HuangZ J, et al. Test and study on SO3 removal performance of different wet flue gas desulfurization technologies at ultra-low pollutants emission[J]. Electric Power, 2017, 50(3): 46-50.
20 ÅmandL E, BoL, EskilssonD, et al. Deposits on heat transfer tubes during co-combustion of biofuels and sewage sludge[J]. Fuel, 2006, 85(10): 1313-1322.
21 LiuK, XieW, LiD, et al. The effect of chlorine and sulfur on the composition of ash deposits in a fluidized bed combustion system[J]. Theriogenology, 2000, 54(5): 757-769.
22 YamashitaM, KonishiH, KozakuraT, et al. In situ observation of initial rust formation process on carbon steel under NaSO and NaCl solution films with wet/dry cycles using synchrotron radiation X-rays[J]. Corrosion Science, 2005, 47(10): 2492-2498.
23 TsutsumiY, NishikataA, TsuruT. Pitting corrosion mechanism of Type 304 stainless steel under a droplet of chloride solutions[J]. Corrosion Science, 2007, 49(3): 1394-1407.
24 JinZ H, GeH H, LinW W, et al. Corrosion behaviour of 316L stainless steel and anti-corrosion materials in a high acidified chloride solution[J]. Applied Surface Science, 2014, 322: 47-56.
25 LeeJ S, FushimiK, NakanishiT, et al. Corrosion behaviour of ferrite and austenite phases on super duplex stainless steel in a modified green-death solution[J]. Corrosion Science, 2014, 89(89): 111-117.
26 WangY, WangW, LiuY, et al. Study of localized corrosion of 304 stainless steel under chloride solution droplets using the wire beam electrode[J]. Corrosion Science, 2011, 53(9): 2963-2968.
27 MaY, LiY, WangF. Corrosion of low carbon steel in atmospheric environments of different chloride content[J]. Corrosion Science, 2009, 51(5): 997-1006.
28 NishimuraT. Electrochemical behaviour and structure of rust formed on Si- and Al-bearing steel after atmospheric exposure[J]. Corrosion Science, 2010, 52(11): 3609-3614.
29 RémazeillesC, RefaitP. On the formation of β-FeOOH (akaganéite) in chloride-containing environments[J]. Corrosion Science, 2007, 49(2): 844-857.
30 CorvoF, BetancourtN, MendozaA. The influence of airborne salinity on the atmospheric corrosion of steel[J]. Corrosion Science, 1995, 37(12): 1889-1901.
[1] Guanghua ZHANG, Qiuchen DONG, Jing LIU. Two-phase mass transfer of multi-benzene gemini quaternary ammonium salt in oil-water [J]. CIESC Journal, 2019, 70(S1): 61-68.
[2] Jian HAN, Xinhua LIU, Jingdong HE, Honglin LI, Nan ZHANG. Simultaneous reduction of NO x and CO emissions in domestic decoupling coal-fired stoves [J]. CIESC Journal, 2019, 70(5): 1991-1998.
[3] Changchun HE, Lei XU, Wei CHEN, Xiaofeng XU, Pengwei OUYANG. Mechanism prediction of flow-induced corrosion and optimization of protection measures in overhead system of atmospheric tower [J]. CIESC Journal, 2019, 70(3): 1027-1034.
[4] Yuling ZHANG, Liping ZHANG, Qian WANG, Xudong LI, Xiaodong LIU, Jinghong ZHANG. Optimization of extraction process of inorganic phosphorus in scale of circulating cooling system [J]. CIESC Journal, 2019, 70(3): 1083-1088.
[5] Jingcai CHANG, Xiang WANG, Peng WANG, Lin CUI, Jun LI, Xin ZHANG, Chunyuan MA. Evaporation characteristics of water film over collecting electrode in high-voltage electrical field [J]. CIESC Journal, 2019, 70(3): 865-873.
[6] XIA Hongtao, ZOU Siyu, XIAO Jie. Numerical simulation of shear-thinning droplet impacting on randomly rough surfaces [J]. CIESC Journal, 2019, 70(2): 634-645.
[7] Dongyan LI, Wei WEI, Feng HAN. Preparation and corrosion resistance of SiC membrane using for dust removal in high temperature [J]. CIESC Journal, 2019, 70(1): 336-344.
[8] Lulu PAN, Danjing WU, Weiping LIU. Electrical performance of MFC-MEC coupling system and treatment of heavy metal wastewater containing cadmium [J]. CIESC Journal, 2019, 70(1): 242-250.
[9] LUO Kai, WANG Jianhua, YU Junhuo, WENG Jun. Effect of methane concentration on diamond film in high power microwave plasma system [J]. CIESC Journal, 2018, 69(S2): 505-511.
[10] TANG Erjun, YAO Mengmeng, GUO Xiaofeng, WANG Ruihong, LIU Shaojie, GAO Hao. Film formation for aqueous epoxy acrylate latex coatings [J]. CIESC Journal, 2018, 69(S1): 143-147.
[11] LIU Fangqi, YU Dunxi, WU Jianqun, LEI Yu, WEN Chang, XU Minghou. Effect of SCR on particulate matter emissions from a coal-fired boiler [J]. CIESC Journal, 2018, 69(9): 4051-4057.
[12] SHEN Tianxu, WU Jian, YAN Jingchun, SHEN Laihong. Chemical looping combustion of coal in a two-stage fuel reactor [J]. CIESC Journal, 2018, 69(9): 3965-3974.
[13] HOU Mengjie, ZHANG Xinru, WANG Yonghong, LI Jinping, LIU Chengcen, LING Jun. Preparation of PVAm mixed matrix membranes by incorporating halloysite nanotubes for CO2/N2 separation [J]. CIESC Journal, 2018, 69(9): 4106-4113.
[14] LIU Dunyu, WALL Terry, STANGER Rohan. Experimental and modelling study on co-absorption of SO2 and CO2 during desulfurization process by flue gas cooler for oxy-fuel combustion flue gas [J]. CIESC Journal, 2018, 69(9): 4019-4029.
[15] HAN Tianyi, YAO Yuan, XU Jun, QI Liqiang, LI Jintao, TENG Fei. Synergetic mechanism of hygroscopic agent, surfactant and catalyst on desulfurization of flue gas circulating fluidized bed [J]. CIESC Journal, 2018, 69(9): 4044-4050.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LING Lixia, ZHANG Riguang, WANG Baojun, XIE Kechang. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] LEI Zhigang, LONG Aibin, JIA Meiru, LIU Xueyi. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] SU Haifeng, LIU Huaikun, WANG Fan, LÜXiaoyan, WEN Yanxuan. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] WANG Jianlin, XUE Yaoyu, YU Tao, ZHAO Liqiang. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] SUN Fubao, MAO Zhonggui, ZHANG Jianhua, ZHANG Hongjian, TANG Lei, ZHANG Chengming, ZHANG Jing, ZHAI Fangfang. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] Gao Ruichang, Song Baodong and Yuan Xiaojing( Chemical Engineering Research Center, Tianjin University, Tianjin 300072). LIQUID FLOW DISTRIBUTION IN GAS - LIQUID COUNTER - CONTACTING PACKED COLUMN[J]. , 1999, 50(1): 94 -100 .
[7] Su Yaxin, Luo Zhongyang and Cen Kefa( Institute of Thermal Power Engineering , Zhejiang University , Hangzhou 310027). A STUDY ON THE FINS OF HEAT EXCHANGERS FROM OPTIMIZATION OF ENTROPY GENERATION[J]. , 1999, 50(1): 118 -124 .
[8] Luo Xiaoping(Department of Industrial Equipment and Control Engineering , South China University of Technology, Guangzhou 510641)Deng Xianhe and Deng Songjiu( Research Institute of Chemical Engineering, South China University of Technology, Guangzhou 5106. RESEARCH ON FLOW RESISTANCE OF RING SUPPORT HEAT EXCHANGER WITH LONGITUDINAL FLUID FLOW ON SHELL SIDE[J]. , 1999, 50(1): 130 -135 .
[9] Jin Wenzheng , Gao Guangtu , Qu Yixin and Wang Wenchuan ( College of Chemical Engineering, Beijing Univercity of Chemical Technology, Beijing 100029). MONTE CARLO SIMULATION OF HENRY CONSTANT OF METHANE OR BENZENE IN INFINITE DILUTE AQUEOUS SOLUTIONS[J]. , 1999, 50(2): 174 -184 .
[10]

LI Qingzhao;ZHAO Changsui;CHEN Xiaoping;WU Weifang;LI Yingjie

.

Combustion of pulverized coal in O2/CO2 mixtures and its pore structure development

[J]. , 2008, 59(11): 2891 -2897 .