CIESC Journal ›› 2019, Vol. 70 ›› Issue (1): 1-9.doi: 10.11949/j.issn.0438-1157.20180315

• Reviews and monographs • Previous Articles     Next Articles

Similarity between fluidization and phase transition

Wei CHEN(),Ying REN   

  1. State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2018-03-23 Revised:2018-09-20 Online:2019-01-05 Published:2018-09-26
  • Contact: Wei CHEN E-mail:chenwei@ipe.ac.cn

Abstract:

Generally, single-component multiphase systems exhibit three different structures and properties in solid, liquid, and gaseous state with temperature changes. The multiphase system consisting of solid particles and fluids in a circulating fluidized bed also experiences three structures with the increase of gas flow velocity, namely, bubbling, turbulence and rapid flow. Although the two systems are quite different in structure and nature, using the concept of mesoscience to analyze the state of the system, the transitional parameter, the driving force for the system state evolution and the underlying mechanisms, the two systems turn to be quite similar in nature. Their physical roots are alike in all important essentials, which are the inevitable result of the compromise in competition between different dominant mechanisms in the complex systems. After comparing the fluidization and the phase transition, a new proposition based on the energy minimization multi-scale (EMMS) model is suggested to sufficiently characterize the real non-equilibrium kinetics of phase transition.

Key words: phase change, multiphase flow, fluidization, complex system, compete, coordinate

CLC Number: 

  • TQ 01

Fig.1

Schematic diagram of system structure evolution for mixed system of solid particles and gases with gas velocity increasing in fluidization"

Table 1

Comparison of different beds(taking gas-solid system for example)"

Velocity range Fluidization form Characteristics
0<U g<U mf fixed bed stationary particles locating at bottom with gas flowing through gap
U mfU g<U pt fluidized bed heterogeneous structure with bubble / particle clusters
U ptU g gas-fluidized bed uniform dilute phase transport

Fig.2

Schematic diagram of water circulation system at three different temperatures"

Fig.3

Phase diagram of granular-fluid system(relationship among flow rate G s, hold up I and gas flow rate, black gridline is dilute and dense phase coexistence line[47])"

Fig.4

Schematic diagram of relationship between pressure of a single component (taking carbon dioxide as example) and reciprocal of volume(different lines represent different temperatures, and temperature decreases from top to bottom,black gridline is gas and liquid phase coexistence line, small figure is isotherm)"

Fig.5

Relationship between kinetic energy and potential energy of Ar atomic system with different temperature (all of physical quantities in diagram are in reduced unit)"

Fig. 6

Change of control mechanism leads to transformation of structure[41] "

Table 2

Comparison of gas-solid fluidization and single component material system"

Item Transition parameter Energy to drive state evolution State
1 2 3
gas-solid particle mixing system minimum fluidization velocity U mf,critical velocity U pt at which choking occurs kinetic energy fixed bed fluidization dilute conveying
single component material melting point of solid-liquid phase transition, boiling point of liquid-gas phase transition thermal energy solid liquid gas
comment A→A-B in Fig. 6, A-B→B in Fig. 6 dominated by mechanism A A-B compromise in competition dominated by mechanism B
1 Chandler D . From 50 years ago, the birth of modern liquid-state science[J]. Annual Review of Physical Chemistry, 2017, 68: 19-38.
2 Stanley H E . Introduction to phase transitions and critical phenomena[J]. Physics Today, 1973, 26(1): 71-72.
3 Visintin A . Models of Phase Transitions[M]. Basel: Birkhauser, 1996: 59-70.
4 于渌, 郝柏林, 陈晓松 . 边缘奇迹: 相变和临界现象[M]. 北京: 科学出版社, 2005: 168-200.
Yu L , Hao B L , Chen X S . Phase Transitions and Critical Phenomena[M].Beijing: Science Press, 2005: 168-200.
5 Schinckus C . Ising model, econophysics and analogies[J]. Physica A-Statistical Mechanics and Its Applications, 2018, 508: 95-103.
6 Ostman E , Arnalds U B , Kapaklis V , et al . Ising-like behaviour of mesoscopic magnetic chains[J]. Journal of Physics-Condensed Matter, 2018, 30(36): 365301-365304.
7 Hadjiagapiou I A , Velonakis I N . The random field Ising model in a shifted bimodal probability distribution[J]. Physica A-Statistical Mechanics and Its Applications, 2018, 505: 965-972.
8 Francesco P D , Mathieu P , Chald S N . The two-dimensional Ising model[J]. Physics Today, 1975, 28(1): 89-91.
9 Ruutu V M H , Parts U , Koivuniemi J H , et al . Intrinsic and extrinsic mechanisms of vortex formation in superfluid He-3-B[J]. Journal of Low Temperature Physics, 1997, 107(1/2): 93-164.
10 Balibar S , Caupin F . Supersolidity and disorder[J]. Journal of Physics-Condensed Matter, 2008, 20(17): 173201-173220.
11 Galli D E , Reatto L . Solid He-4 and the supersolid phase: from theoretical speculation to the discovery of a new state of matter? -a review of the past and present status of research[J]. Journal of the Physical Society of Japan, 2008, 77(11): 111010-111026.
12 Kong W , Pei L , Zhang J . Linear dichroism spectroscopy of gas phase biological molecules embedded in superfluid helium droplets[J]. International Reviews in Physical Chemistry, 2009, 28(1): 33-52.
13 Varma C M . Considerations on the mechanisms and transition temperatures of superconductivity induced by electronic fluctuations[J]. Reports on Progress in Physics, 2012, 75(5): 052501-052521.
14 Bulgac A . Time-dependent density functional theory and the real-time dynamics of fermi superfluids[J]. Annual Review of Nuclear and Particle Science, 2013, 63: 97-121.
15 Tsymbalenko V L . Amazing growth of helium crystal facets[J]. Physics-Uspekhi, 2015, 58(11): 1059-1073.
16 Yu Y . The second law of thermodynamics and entropy-decreasing processes with He-4 superflows[J]. Modern Physics Letters B, 2016, 30(29): 1630008-1630014.
17 Green A G , Conduit G , Kruger F . Quantum order-by-disorder in strongly correlated metals[J]. Annual Review of Condensed Matter Physics, 2018, 9: 59-77.
18 Kosterlitz J M . Topological defects and phase transitions[J]. International Journal of Modern Physics B, 2018, 32(13): 1830005-1830020.
19 Dewhughes D . Superconducting: a 15 compounds review[J]. Cryogenics, 1975, 15(8): 435-454.
20 Izyumov Y A , Proshin Y N , Khusainov M G . Competition between superconductivity and magnetism in ferromagnet/superconductor heterostructures[J]. Physics-Uspekhi, 2002, 45(2): 109-148.
21 Pfleiderer C . Superconducting phases of f-electron compounds[J]. Reviews of Modern Physics, 2009, 81(4): 1551-1624.
22 Gabovich A M , Voitenko A I , Ekino T , et al . Competition of superconductivity and charge density waves in cuprates: recent evidence and interpretation[J]. Advances in Condensed Matter Physics, 2010, 2010: 681070-681110.
23 Kirtley J R . Fundamental studies of superconductors using scanning magnetic imaging[J]. Reports on Progress in Physics, 2010, 73(12): 126501-126537.
24 Wilson J A . A perspective on the Fe-based superconductors[J]. Journal of Physics-Condensed Matter, 2010, 22(20): 203201-203228.
25 Carbotte J P , Timusk T , Hwang J . Bosons in high-temperature superconductors: an experimental survey[J]. Reports on Progress in Physics, 2011, 74(6): 066501-066544.
26 Raveau B . Strongly correlated electron systems: from chemistry to physics[J]. Comptes Rendus Chimie, 2011, 14(9): 856-864.
27 王少华, 叶自强, 罗盛 . 高温超导输电电缆的发展现状[J]. 高压电器, 2011, 47(7): 80-85.
Wang S H , Ye Z Q , Luo S . Development status of high temperature superconducting cable[J]. High Voltage Apparatus, 2011, 47(7): 80-85.
28 Ramakrishnan T V . Ginzburg-Landau like theory of high temperature superconductivity in the cuprates: emergent d-wave order[J]. International Journal of Modern Physics B, 2012, 26(10): 1230005-1230032.
29 Kato M , Sato O . Magnetic flux structures of finite superconducting networks[J]. Superconductor Science & Technology, 2013, 26(3): 033001-033027.
30 Tkachov G , Hankiewicz E M . Spin-helical transport in normal and superconducting topological insulators[J]. Physica Status Solidi B-Basic Solid State Physics, 2013, 250(2): 215-232.
31 Suderow H , Guillamon I , Rodrigo J G , et al . Imaging superconducting vortex cores and lattices with a scanning tunneling microscope[J]. Superconductor Science & Technology, 2014, 27(6): 063001-063033.
32 Hosono H , Tanabe K , Takayama-Muromachi E , et al . Exploration of new superconductors and functional materials, and fabrication of superconducting tapes and wires of iron pnictides[J]. Science and Technology of Advanced Materials, 2015, 16(3): 033503-033590.
33 Li C , Wang X , Wang J , et al . The high temperature superconducting filters and its application progress[J]. Chinese Science Bulletin, 2017, 62(34): 4010-4024.
34 Manzeli S , Ovchinnikov D , Pasquier D , et al . 2D transition metal dichalcogenides[J]. Nature Reviews Materials, 2017, 2(8): 17033-17048.
35 Wang H , Li X , Gao G , et al . Hydrogen-rich superconductors at high pressures[J]. Wiley Interdisciplinary Reviews-Computational Molecular Science, 2018, 8(1): 1330-1343.
36 刘新华, 高士秋, 李静海 . 循环流化床中颗粒团聚物性质的PDPA测量[J]. 化工学报, 2004, 55(4): 555-562.
Liu X H , Gao S Q , Li J H . Characteristics of particle clusters in gas-solids circulating fluidized beds by using PDPA[J]. Journal of Chemical Industry and Engineering(China), 2004, 55(4): 555-562.
37 王利民, 邱小平, 李静海 . 气固两相流介尺度LBM-DEM模型[J]. 计算力学学报, 2015, 32(5): 685-692.
Wang L M , Qiu X P , Li J H . Mesoscale LBM-DEM model for gas-solid two-phase flow[J]. Chinese Journal of Computational Mechanics, 2015, 32(5): 685-692.
38 Li J . Mesoscales: the path to transdisciplinarity[J]. Chemical Engineering Journal, 2015, 277: 112-115.
39 杨宁, 李静海 . 化学工程中的介尺度科学与虚拟过程工程: 分析与展望[J]. 化工学报, 2014, 65(7): 2403-2409.
Yang N , Li J H . Mesoscience in chemical engineering and virtual process engineering: analysis and perspective[J]. CIESC Journal, 2014, 65(7): 2403-2409.
40 欧阳洁, 李静海, 孙国刚, 等 . 气固流态化动态特征的模拟[J]. 应用基础与工程科学学报, 2002, 10(4): 338-346.
Ouyang J , Li J H , Sun G G , et al . Simulation of dynamic characteristics for gas-solid fluidization[J]. Journal of Basic Science and Engineering, 2002, 10(4): 338-346.
41 Li J . Exploring the logic and landscape of the knowledge system: multilevel structures, each multiscaled with complexity at the mesoscale[J]. Engineering, 2016, 2(3): 276-285.
42 郭慕孙, 化学工程的多层次结构[J]. 化学工程, 2007, 35(10): 75-78.
Guo M S . Hierarchical structure of chemical engineering[J]. Chemical Engineering(China), 2007, 35(10): 75-78.
43 李洪钟, 郭慕孙 . 回眸与展望流态化科学与技术[J]. 化工学报, 2013, 64(1): 52-62.
Li H Z , Kwauk M . Review and prospect of fluidization science and technology[J]. CIESC Journal, 2013, 64(1): 52-62.
44 Schgerl K . Biofluidization: application of the fluidization technique in biotechnology[J]. Canadian Journal of Chemical Engineering, 2010, 67(2): 178-184.
45 徐骥, 卢利强, 葛蔚, 等 . 基于EMMS范式的离散模拟及其化工应用[J]. 化工学报, 2016, 67(1): 14-26.
Xu J , Lu L Q , Ge W , et al . Discrete simulation based on EMMS paradigm and its applications in chemical engineering[J]. CIESC Journal, 2016, 67(1): 14-26.
46 刘雅宁, 鲁波娜, 卢利强, 等 . 基于EMMS模型的大型催化裂化装置再生器气固分布数值模拟[J]. 化工学报, 2015, 66(8): 2911-2919.
Liu Y N , Lu B N , Lu L Q , et al . EMMS-based numerical simulation on gas and solids distribution in large-scale FCC regenerators[J]. CIESC Journal, 2015, 66(8): 2911-2919.
47 Li J , Ge W , Wang W , et al . From Multiscale Modeling to Meso-Science[M]. New York: Springer, 2013.
48 Sawada H , Okada M , Nakagawa S . Measurement of latent heat of melting of thermal storage materials for dynamic type ice thermal storage[J]. Transactions of the Japan Society of Refrigerating & Air Conditioning Engineers, 2011, 20(2): 205-214.
49 Gesari S , Irigoyen B , Juan A . An experiment on the liquid-vapor equilibrium for water[J]. American Journal of Physics, 1996, 64(64): 1165-1168.
50 Andrews T .The Bakerian lecture: on the continuity of the gaseous and liquid states of matter[J]. Philosophical Transactions of the Royal Society of London, 1869, 159: 575-590.
51 Li J . Particle-fluid Two-phase Flow—the Energy-Minimization Multi-scale Method[M]. Beijing: Metallurgical Industry Press, 1994: 1-200.
52 Balescu R . Equilibrium and Nonequilibrium Statistical Mechanics[M]. New York: Wiley, 1975: 570-574.
53 Mayer J E , Mayer M G . Statistical Mechanics[M]. New York: Wiley, 1977: 29-49.
54 Pathria R K . Statistical Mechanics[M]. 2 ed. New York: Academic Press, 1996: 57-69.
55 Sethna J P , Coppersmith S . Statistical Mechanics: Entropy, Order Parameters[M]. Oxford: Oxford University Press, 2006: 429-430.
56 Li J , Ge W , Wang W , et al . Meso-scale Modeling: the EMMS Model for Gas-solid Systems[M]. New York: Springer, 2013: 47-89.
57 Li J , Huang W . Towards Mesoscience: the Principle of Compromise in Competition[M]. New York: Springer, 2014: 1-76.
58 Li J , Ge W , Wang W , et al . Focusing on mesoscales: from the energy-minimization multiscale model to mesoscience[J]. Current Opinion in Chemical Engineering, 2016, 13(S1): 10-23.
59 Li J , Ge W , Wang W , et al . Focusing on the meso-scales of multi-scale phenomena-in search for a new paradigm in chemical engineering[J]. Particuology, 2010, 8(6): 634-639.
60 Li J , Huang W , Ge W . Multilevel and multiscale PSE: challenges and opportunities at mesoscales[C]//Eden M R, Ierapetritou M G, Towler G P.Computer Aided Chemical Engineering. Amsterdam: Elsevier, 2018: 11-19.
61 赵凯华, 罗蔚茵 . 新概念物理教程: 热学[M] 北京: 高等教育出版社, 2005: 69.
Zhao K H , Luo W Y . New Concept Physics Course: Thermodynamics[M]. Beijing: Higher Education Press, 2005: 69.
62 Paolantoni M , Lago N F , Albert M , et al . Tetrahedral ordering in water: Raman profiles and their temperature dependence[J]. Journal of Physical Chemistry A, 2009, 113(52): 15100.
63 Tokushima T , Harada Y , Takahashi O , et al . High resolution X-ray emission spectroscopy of liquid water: the observation of two structural motifs[J]. Chemical Physics Letters, 2008, 460(4): 387-400.
64 Tokushima T , Harada Y , Horikawa Y , et al . High resolution X-ray emission spectroscopy of water and its assignment based on two structural motifs[J]. Journal of Electron Spectroscopy & Related Phenomena, 2010, 177(2): 192-205.
65 Wikfeldt K T .Structure, dynamics and thermodynamics of liquid water: insights from molecular simulations [D]. Stockholm: Stockholm University, 2011.
66 Wikfeldt K T , Nilsson A , Pettersson L G . Spatially inhomogeneous bimodal inherent structure of simulated liquid water[J]. Physical Chemistry Chemical Physics, 2011, 13(44): 19918-19924.
67 Frenkel D , Smit B . Understanding molecular simulation: from algorithms to applications[M]. 2 ed. New York: Academic Press, 1996: 63-105.
68 Patashinski A Z , Mitus A C , Ratner M A . Towards understanding the local structure of liquids[J]. Physics Reports, 1997, 288(1-6): 409-434.
69 Müller I . Entropy and energy—a universal competition[J]. Entropy, 2008, 10(4): 462-476.
70 Li J H , Huang W L , Chen J H , et al . Mesoscience based on the EMMS principle of compromise in competition[J]. Chemical Engineering Journal, 2018, 333: 327-335.
[1] Hua CHEN, Xiuli LIU, Yaxing YANG, Liqiong ZHONG, Lei WANG, Na GAO. Numerical simulation of foam metal copper/paraffin phase change thermal storage process [J]. CIESC Journal, 2019, 70(S1): 86-92.
[2] Wenyu LI, Liangliang SUN, Yanping YUAN, Xiaoling CAO, Bo XIANG. Heat storage and release characteristics of solar phase change Kang and influence factors [J]. CIESC Journal, 2019, 70(5): 1761-1771.
[3] Wu SU, Xiaogang SHI, Yingya WU, Jinsen GAO, Xingying LAN. CFD simulation on hydrogenation of acetylene to ethylene in slurry bed [J]. CIESC Journal, 2019, 70(5): 1858-1867.
[4] Linchen ZHOU, Zhigao SUN, Ling LU, Sai WANG, Juan LI, Cuimin LI. Formation and stability of HCFC–141b hydrate in organic phase change emulsion [J]. CIESC Journal, 2019, 70(5): 1674-1681.
[5] Xin ZHOU, Ledong DENG, Hong WANG, Xun ZHU, Rong CHEN, Qiang LIAO, Yudong DING. Effect of cooled cylindrical surface on droplet dynamic behavior [J]. CIESC Journal, 2019, 70(3): 883-891.
[6] Shunhao WANG, Wenli ZHU, Zhenggen HU, Rui ZHOU, Liu YU, Bin WANG, Xiaobin ZHANG. Numerical simulation and experimental validation of evaporation characteristics of scaled liquid hydrogen tank [J]. CIESC Journal, 2019, 70(3): 840-849.
[7] Yaowu WANG, Jianping PENG, Yuezhong DI, Pengcheng HAO. Mechanism of deterioration for dry barrier material in aluminum electrolysis cells [J]. CIESC Journal, 2019, 70(3): 1035-1041.
[8] Pan WEI, Jiabang YU, Zengxu GUO, Xiaohu YANG, Yaling HE. Experimental visualization on thermal energy storage enhancement through metal foam filled annuli [J]. CIESC Journal, 2019, 70(3): 850-856.
[9] Xiaoshi LIU, Deqiu ZOU, Ruijun HE, Xianfeng MA. Preparation and heat transfer characteristics of GO/paraffin composite phase change emulsions [J]. CIESC Journal, 2019, 70(3): 1188-1197.
[10] Yingjie LIU, Jesse ZHU. Flow behaviors in bubble-driven liquid-solid fluidized-bed adopting binary particles [J]. CIESC Journal, 2019, 70(1): 91-98.
[11] Sunxi ZHOU, Xuelai ZHANG, Sheng LIU, Qiyang CHEN, Xiaofeng XU, Yinghui WANG. Preparation and properties of decyl alcohol-palmitic acid/expanded graphite low temperature composite phase change material [J]. CIESC Journal, 2019, 70(1): 290-297.
[12] ZHANG Liang, SHI Zhongke. Application of phase change materials in automobile energy saving [J]. CIESC Journal, 2018, 69(S2): 17-25.
[13] WAN Xingchen, LIN Wensheng. Flow boiling heat transfer of propane in helically coiled tube [J]. CIESC Journal, 2018, 69(S2): 135-140.
[14] ZHOU Kan, LI Wei, LI Junye, ZHU Hua, SHENG Kuang, BAI Guanghui, CHANG Hao. Flow boiling heat transfer characteristics of superhydrophilic modified surface in microchannels [J]. CIESC Journal, 2018, 69(S2): 82-88.
[15] XU Xiaoying, YOU Hao, WANG Wen. Numerical simulations of desublimation of CO2 or water vapor in liquid methane with cellular automata method [J]. CIESC Journal, 2018, 69(S2): 402-407.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LING Lixia, ZHANG Riguang, WANG Baojun, XIE Kechang. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] LEI Zhigang, LONG Aibin, JIA Meiru, LIU Xueyi. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] SU Haifeng, LIU Huaikun, WANG Fan, LÜXiaoyan, WEN Yanxuan. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] WANG Jianlin, XUE Yaoyu, YU Tao, ZHAO Liqiang. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] SUN Fubao, MAO Zhonggui, ZHANG Jianhua, ZHANG Hongjian, TANG Lei, ZHANG Chengming, ZHANG Jing, ZHAI Fangfang. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] Gao Ruichang, Song Baodong and Yuan Xiaojing( Chemical Engineering Research Center, Tianjin University, Tianjin 300072). LIQUID FLOW DISTRIBUTION IN GAS - LIQUID COUNTER - CONTACTING PACKED COLUMN[J]. , 1999, 50(1): 94 -100 .
[7] Su Yaxin, Luo Zhongyang and Cen Kefa( Institute of Thermal Power Engineering , Zhejiang University , Hangzhou 310027). A STUDY ON THE FINS OF HEAT EXCHANGERS FROM OPTIMIZATION OF ENTROPY GENERATION[J]. , 1999, 50(1): 118 -124 .
[8] Luo Xiaoping(Department of Industrial Equipment and Control Engineering , South China University of Technology, Guangzhou 510641)Deng Xianhe and Deng Songjiu( Research Institute of Chemical Engineering, South China University of Technology, Guangzhou 5106. RESEARCH ON FLOW RESISTANCE OF RING SUPPORT HEAT EXCHANGER WITH LONGITUDINAL FLUID FLOW ON SHELL SIDE[J]. , 1999, 50(1): 130 -135 .
[9] Jin Wenzheng , Gao Guangtu , Qu Yixin and Wang Wenchuan ( College of Chemical Engineering, Beijing Univercity of Chemical Technology, Beijing 100029). MONTE CARLO SIMULATION OF HENRY CONSTANT OF METHANE OR BENZENE IN INFINITE DILUTE AQUEOUS SOLUTIONS[J]. , 1999, 50(2): 174 -184 .
[10]

LI Qingzhao;ZHAO Changsui;CHEN Xiaoping;WU Weifang;LI Yingjie

.

Combustion of pulverized coal in O2/CO2 mixtures and its pore structure development

[J]. , 2008, 59(11): 2891 -2897 .