CIESC Journal ›› 2019, Vol. 70 ›› Issue (1): 107-115.doi: 10.11949/j.issn.0438-1157.20180307

• Fluid dynamics and transport phenomena • Previous Articles     Next Articles

Optimization design and experimental properties of high-temperature and high-capacity pulse tube cooler

Weifeng DENG(),Zhenhua JIANG,Shaoshuai LIU,Ankuo ZHANG,Yinong WU()   

  1. Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China
  • Received:2018-03-22 Revised:2018-10-08 Online:2019-01-05 Published:2018-10-25
  • Contact: Yinong WU E-mail:dwf@mail.sitp.ac.cn;wyn@mail.sitp.ac.cn

Abstract:

A high-capacity pulse tube cooler (PTC) with nominal cooling of 50 W/170 K is presented in this paper. It is driven by an opposed-piston dynamic magnetic linear compressor. The regenerator and pulse tube are arranged in coaxial. The inertance tube and reservoir are used as passive phase shifter of the PTC. Based on the principle of electrical-mechanical-acoustic coupling field, a dynamic model of the PTC is proposed and transient simulation was conducted on the characteristics of the compressor under load. The mass-spring system of the compressor is improved to make the PTC resonant. The mass of the PTC is less than 12 kg without electric control equipment. A performance of 50 W/170 K is achieved with 230 W electrical power while the motor efficiency and related Carnot efficiency are 92.7% and 16.5% respectively. The specific power (electrical power/cooling power) is less than 5 W/W at the temperature range of 150—200 K. Under the rated input power, the maximum cooling power reaches 90 W@200 K. The PTC can be used for space to cool down giant Infrared Focal Plane Array (IRFPA) and provide an alternative to domestic refrigerator as cold source at the temperature range of -60—-20℃ as well.

Key words: high-temperature, high-capacity, pulse tube cooler, linear compressor, dynamic model, transient simulation, optimization design

CLC Number: 

  • TB 651

Fig.1

Main structural drawing of coaxial PTC"

Fig.2

Acoustic impedance diagram of PTC"

Table 1

Main structural parameters of pulse tube cold finger"

参数数值参数数值
蓄冷器长度47 mm惯性管Ⅰ?3×0.8 mm
蓄冷器内径13.5 mm惯性管Ⅱ? 4.5×0.8 mm
蓄冷器外径26 mm气库容积250 ml
脉管长度63 mm活塞直径26 mm
脉管内径13 mm活塞冲程±6 mm

Fig.3

Coupling system of electrical-mechanical-acoustic of linear compressor"

Fig.4

Vector diagram of forces on piston"

Fig.5

Co-simulation of PTC based on Simplore and Maxwell"

Fig.6

Schematic of experimental setup of PTC"

Fig.7

Picture of PTC"

Fig.8

Changing curve of compressor current with varying frequencies under load"

Fig.9

Changing curve of piston displacement with varying frequencies under load"

Fig.10

Changing curve of cooler COP with varying frequencies at 50 W/170 K"

Fig.11

Cooling performance of PTC at 170 K with varying charging pressures"

Fig.12

Cooling down curve of PTC under no load"

Fig.13

Cooling performance of PTC at temperature range of 150~200 K"

Fig.14

Cooling performance of PTC at -60, -40 and -20℃"

Fig.15

PV power efficiency of compressor versus cooling power"

Fig.16

Percentage of PCu and all the other losses versus cooling power respectively"

1 DavisT, TomlinsonbJ, LedbetterJ. Military space cryogenic cooling requirements for the 21st century[C]// Proceedings of 11th International Cryocooler Conference. California, America, 2001: 1-9.
2 RossR G. Aerospace coolers: 50-year quest for long-life cryogenic cooling in space[M]// Timmerhaus K D, Reed R P. Cryogenic Engineering: Fifty Years of Progress. New York: Springer, 2007: 225-284.
3 GroepW L, MullieJ C, WillemsW J, et al. Development of a 15 W coaxial pulse tube cooler[C]// Proceedings of 15th International Cryocooler Conference. California, America, 2009: 157-165.
4 RadebaughR. Thermodynamics of regenerative refrigerator[J]. Generation of Low Temperature and its Applications, 2003, (5): 1-20.
5 戴巍. 热声制冷技术的研究前沿及进展[J]. 化工学报, 2008, 59(S2): 14-22.
DaiW. Advances in thermoacoustic refrigeration[J]. Journal of Chemical Industry and Engineering (China), 2008, 59(S2): 14-22.
6 ZhuS W, WuP Y, ChenZ Q. Double inlet pulse tube refrigerators: an important improvement[J]. Cryogenics, 1990, 30(6): 514-520.
7 van der WaltN R, ReuvenU. Linear electrodynamic machine: US 5389844[P]. 1995-09-21.
8 ZhuS W, MatsubaraY. A numerical method of regenerator[J]. Cryogenics, 2004, 44(2): 131-140.
9 GaryJ, O’GallagherA, RadebaughR, et al. REGEN 3.3:User Manual[M]. National Institute of Standards and Technology, 2008.
10 RadebaughR, ZimmermanJ, SmithD R, et al. A comparison of three types pulse tube refrigerators: new methods for reaching 60K[C]// Kittel P. Advanced in Cryogenic Engineering. Vol.31. Proceedings of the Cryogenic Engineering Conference. New York, America, 1986: 779-789.
11 RoachP R, KashaniA. Pulse tube coolers with an inertance tube: theory, modeling and practice[C]// Kittel P. Advanced in Cryogenic Engineering. Vol.43. Proceedings of the Cryogenic Engineering Conference. New York, America, 1998: 1895-1902.
12 GedeonD. Sage User s Guide[M]. Gedeon Associates, 2009.
13 ClarkJ P, WardW C, SwiftG W. Design environment for low-amplitude thermoacoustic energy conversion[J]. The Journal of the Acoustical Society of America, 2007, 122(5). DOI: 10.1121/1.2942768.
doi: 10.1121/1.2942768.
14 DurandD, NguyenT, TwardE. High efficiency cryocooler performance[C]// Proceedings of the Cryogenic Engineering Conference. New York, 2014: 97-104.
15 WiertzT, UrbanoJ. Qualification of a European large pulse tube cooler system for space applications[C]// Proceedings of 19th International Cryocooler Conference. California, America, 2016: 17-154.
16 黄宇, 胡剑英, 戴巍, 等.高效同轴脉冲管制冷机性能的实验研究[J].工程热物理学报, 2011, 32(2): 189-192.
HuangY, HuJ Y, DaiW, et al. Experimental study of a high efficiency coaxial pulse tube cryocooler[J]. Journal of Engineering Thermophysics, 2011, 32(2): 189-192.
17 ArtsR, MullieJ, TanchonT, et al. LPT6510 Pulse tube cooler for 60—150 K applications[C]// Proceedings of 19th International Cryocooler Conference. California, America, 2016: 155-159.
18 ChassaingC, ButterworthJ, AigouyG, et al. 150 K—200 K Pulse tube cooler for micro satellites[C]// Proceedings of 18th International Cryocooler Conference. New York, America, 2014: 79-86.
19 MaiM, RosenhagenC, RuehlichI. Development of single piston moving magnet cryocooler SX020[C]// Proceedings of 18th International Cryocooler Conference. New York, 2014: 65-71.
20 ZhangA K, WuY N, LiuS S, et al. Experiment study of a coaxial pulse tube cryocooler[C]//Proceedings of 18th International Cryocooler Conference. New York, America, 2014: 151-154.
21 LiuS S, ChenX, ZhangA K, et al. Investigation on phase shifter of a 10 W/70 K inertance pulse tube refrigerator[J]. International Journal of Refrigeration, 2017, 74: 448-455.
22 刘少帅, 张华, 张安阔, 等. 80 K脉管制冷机惯性管调相机理及优化研究[J]. 制冷学报, 2016, 37(5): 100-105.
LiuS S, ZhangH, ZhangA K, et al. Theory and optimization study of inertance tube of 80 K pulse tube refrigerator[J]. Journal of Refrigeration, 2016, 37(5): 100-105.
23 ZhangA K, ChenX, WuY N, et al. Study on a 10 W/90 K in-line pulse tube cryocooler[J]. Cryogenics, 2012, 52: 800-804.
24 KiT, JeongS. Optimal design of the pulse tube refrigerator with slit-type heat exchangers[J]. Cryogenics, 2010, 50: 608-614.
25 KiT, JeongS. Stirling-type pulse tube refrigerator with slit-type heat exchangers for HTS superconducting motor[J]. Cryogenics, 2011, 51(6): 341-346.
26 刘少帅, 张安阔, 陈曦, 等. 惯性管盘绕方式对脉管制冷机性能的影响[J]. 化工学报, 2016, 67(5): 1791-1797.
LiuS S, ZhangA K, ChenX, et al. Effect of coiling ways of inertance tube on performance of pulse tube cryocooler[J]. CIESC Journal, 2016, 67(5): 1791-1797.
27 TominagaA. Thermoacoustic theory and its applications to refrigerators[C]// Proceedings of Third Japanese-Sino Joint Seminar on Small Refrigerators and Related Topics. Okayama, Japan:1989: 141-146.
28 SwiftG. Thermoacoustic engines[J]. Journal of the Acoustical Society of America, 1988, 84(4): 1145-1180.
29 SwiftG. Thermoacoustics: a unifying perspective for some engines and refrigerators[J]. Journal of the Acoustical Society of America, 2003, 113: 96-105.
30 WakelandR S. Use of electrodynamic drivers in thermoacoustic refrigerators[J]. Journal of the Acoustical Society of America, 2000, 107(2): 827-832.
31 GanZ H, WangL Y, ZhaoS Y, et al. Acoustic impedance characteristics of linear compressors[J]. Journal of Zhejiang University-Science A (Applied Physics & Engineering), 2013, 14(7): 494-503.
32 RossR G, JohnsonD L, MonG, et al. Cryocooler resonance characterization[J]. Cryogenics. 1994, 34(5): 435-442.
[1] Jie CHENG, Yajun GUO, Teng WANG, Miao GUI, Zhaohui LIU, Zhiqiang SUI. Void fraction distribution of vapor-water two-phase flow in vertical tube bundles using gamma densitometer [J]. CIESC Journal, 2019, 70(4): 1375-1382.
[2] Xiuhui HUANG, Jun WANG, Guomin CUI. Dynamic simulation and analysis of control strategies of acetic acid dehydration tower in PTA plant [J]. CIESC Journal, 2019, 70(2): 625-633.
[3] Zhencheng YE, Huanlan ZHOU, Debao RAO. Hybrid modeling and optimization of acetylene hydrogenation process [J]. CIESC Journal, 2019, 70(2): 496-507.
[4] Wenjing LI, Meng LI, Junfei QIAO. Effluent BOD soft measurement based on mutual information and self-organizing RBF neural network [J]. CIESC Journal, 2019, 70(2): 687-695.
[5] TAO Jun, ZHANG Jijun, MAO Xianhe, ZHAO Jianwei, ZHANG Dongliang, CAI Xinan. Thermodynamics analysis of in-container self-propagating high-temperature synthesis immobilization process using numerical simulation [J]. CIESC Journal, 2018, 69(5): 1846-1853.
[6] LI Zelong, YANG Chunjie, LIU Wenhui, ZHOU Heng, LI Yuxuan. Research on hot metal Si-content prediction based on LSTM-RNN [J]. CIESC Journal, 2018, 69(3): 992-997.
[7] QIAO Junfei, MA Shijie, YANG Cuili. Structure design for recurrent RBF neural network based on recursive orthogonal least squares [J]. CIESC Journal, 2018, 69(3): 1191-1199.
[8] FAN Kai, CHEN Changxu, ZHOU Feng, ZHENG Hui, XU Chunjian. Measurement and correlation of vapor-liquid equilibrium for ternary system of n-butanol-chlorobenzene-acetophenone [J]. CIESC Journal, 2018, 69(2): 578-585.
[9] FAN Xiaoqiang, HAN Guodong, HUANG Zhengliang, SUN Jingyuan, WANG Jingdai, YANG Yongrong, WU Wenqing, XIE Lei. Stability and dynamic behaviors of gas-phase ethylene polymerization process under condensed mode operation [J]. CIESC Journal, 2018, 69(2): 779-791.
[10] ZONG Jie, MA Qinglan, CHEN Guangjin, SUN Changyu. Simulation of solubility for separating carbon dioxide from gas mixture using ZIF-8/glycol slurry [J]. CIESC Journal, 2018, 69(10): 4276-4283.
[11] GU Xiaohua, ZHANG Kun, WANG Tian, HOU Song, SONG Hongfei, LI Taifu, QIU Kui. Fault monitoring of high-sulfur gas sweetening process by combined indicator of CW-HCA [J]. CIESC Journal, 2018, 69(10): 4292-4301.
[12] LU Xiaohua, JIANG Guancong, ZHU Yudan, FENG Xin, LÜ Linghong. Preliminary study on controlling nanoconfined fluid behavior and modelling molecular thermodynamics: progress in development of high-specific surface area TiO2 [J]. CIESC Journal, 2018, 69(1): 1-8.
[13] LI Yaning, WANG Xuelei, TAN Jie, LIU Chengbao, BAI Xiwei. Disturbance modeling and feedforwad control of flue gas denitration in coking reverse process [J]. CIESC Journal, 2017, 68(8): 3168-3176.
[14] JIANG Xinyi, DU Hongbin, LI Shaojun. Atmospheric tower soft sensor based on regression and mutual information of kernel slow features [J]. CIESC Journal, 2017, 68(5): 1977-1986.
[15] ZHANG Dong, LI Jinping, ZHANG Han. All operation mathematical model and thermal performance analysis on combined heating power and biogas system [J]. CIESC Journal, 2017, 68(5): 1998-2008.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LING Lixia, ZHANG Riguang, WANG Baojun, XIE Kechang. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] LEI Zhigang, LONG Aibin, JIA Meiru, LIU Xueyi. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] SU Haifeng, LIU Huaikun, WANG Fan, LÜXiaoyan, WEN Yanxuan. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] WANG Jianlin, XUE Yaoyu, YU Tao, ZHAO Liqiang. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] SUN Fubao, MAO Zhonggui, ZHANG Jianhua, ZHANG Hongjian, TANG Lei, ZHANG Chengming, ZHANG Jing, ZHAI Fangfang. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] Gao Ruichang, Song Baodong and Yuan Xiaojing( Chemical Engineering Research Center, Tianjin University, Tianjin 300072). LIQUID FLOW DISTRIBUTION IN GAS - LIQUID COUNTER - CONTACTING PACKED COLUMN[J]. , 1999, 50(1): 94 -100 .
[7] Su Yaxin, Luo Zhongyang and Cen Kefa( Institute of Thermal Power Engineering , Zhejiang University , Hangzhou 310027). A STUDY ON THE FINS OF HEAT EXCHANGERS FROM OPTIMIZATION OF ENTROPY GENERATION[J]. , 1999, 50(1): 118 -124 .
[8] Luo Xiaoping(Department of Industrial Equipment and Control Engineering , South China University of Technology, Guangzhou 510641)Deng Xianhe and Deng Songjiu( Research Institute of Chemical Engineering, South China University of Technology, Guangzhou 5106. RESEARCH ON FLOW RESISTANCE OF RING SUPPORT HEAT EXCHANGER WITH LONGITUDINAL FLUID FLOW ON SHELL SIDE[J]. , 1999, 50(1): 130 -135 .
[9] Jin Wenzheng , Gao Guangtu , Qu Yixin and Wang Wenchuan ( College of Chemical Engineering, Beijing Univercity of Chemical Technology, Beijing 100029). MONTE CARLO SIMULATION OF HENRY CONSTANT OF METHANE OR BENZENE IN INFINITE DILUTE AQUEOUS SOLUTIONS[J]. , 1999, 50(2): 174 -184 .
[10]

LI Qingzhao;ZHAO Changsui;CHEN Xiaoping;WU Weifang;LI Yingjie

.

Combustion of pulverized coal in O2/CO2 mixtures and its pore structure development

[J]. , 2008, 59(11): 2891 -2897 .