CIESC Journal ›› 2018, Vol. 69 ›› Issue (9): 4075-4082.doi: 10.11949/j.issn.0438-1157.20180255

Previous Articles     Next Articles

Synthesis process optimization and degradation properties of PLA/PBAu block copolymer

CUI Lingna, LIU Yuejun   

  1. Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, Hunan, China
  • Received:2018-03-12 Revised:2018-06-01 Online:2018-09-05 Published:2018-06-12
  • Supported by:

    supported by the National Natural Science Foundation of China (11372108).


A novel PLA/PBAu block copolymer was synthesized by using the hydroxyl terminated poly(lactic acid) (PLA) and poly(butyl acrylate urea) (PBAu) as prepolymer and the hexamethylene diisocyanate (HDI) as chain extender. To determine the optimum synthesis condition for the chain extension, the effects of the amount of chain extender, the chain extension temperature and the amount of catalyst on the PLA/PBAu block copolymer molecular weight were studied. The structure and properties of the films were studied by nuclear magnetic resonance, gel permeation chromatograph, differential scanning calorimetry and scanning electron microscope. The results showed that the PLA/PBAu block copolymer was successfully synthesized, and the molecular weight of the copolymer can reach to 105 with glass transition temperature of 41℃. The crystallization of copolymer films increased with the increase of PBAu content. The accelerated degradation experiment of block copolymers was studied with NaOH solution as the degradation solution. The results showed the degradation rate of copolymer can be significantly improved when the content of PBAu was 30%. The degradation rate of block copolymer could be controlled by adjusting the content of PLA and PBAu prepolymer.

Key words: poly (lactic acid), block copolymer, degradation property, chain extension, polymerization, synthesis

CLC Number: 

  • TB34

[1] HOMKLIN R, HONGSRIPHAN N. Mechanical and thermal properties of PLA/PBS co-continuous blends adding nucleating agent[J]. Energy Procedia, 2013, 34:871-879.
[2] LIM L T, AURAS R, RUBINO M. Processing technologies for poly(lactic acid)[J]. Progress in Polymer Science, 2008, 33(8):820-852.
[3] DRUMRIGHT R E, GRUBER P R, HENTON D E. Polylactic acid technology[J]. Advanced Materials, 2000, 12(23):1841-1846.
[4] JAKE A, SHAWN P, REBEKAH M K, et al. Engineering microbial chemical factories to produce renewable "biomonomers"[J]. Frontiers in Microbiology, 2012, 3(3):313-319.
[5] O'SHEA R, WALL D, KILGALLON I, et al. Assessment of the impact of incentives and of scale on the build order and location of biomethane facilities and the feedstock they utilize[J]. Applied Energy, 2016, 182:394-408.
[6] ASAM Z U Z, POULSEN T G, NIZAMI A S, et al. How can we improve biomethane production per unit of feedstock in biogas plants[J]. Applied Energy, 2011, 88(6):2013-2018.
[7] RAY S S, OKAMOTO M. Biodegradable polylactide and its nanocomposites:opening a new dimension for plastics and composites[J]. Macromolecular Rapid Communications, 2003, 24(14):815-840.
[8] SHI X, ZHANG G, PHUONG T V, et al. Synergistic effects of nucleating agents and plasticizers on the crystallization behavior of poly(lactic acid)[J]. Molecules, 2015, 20(1):1579-1593.
[9] MWAURA J K, MATHAI M K, CHEN C, et al. Light emitting diodes prepared from terbium-immobilized polyurea chelates[J]. Journal of Macromolecular Science-Part A:Pure and Applied Chemistry, 2003, 40(12):1253-1262.
[10] IANNACE S, NICOLAIS L. Isothermal crystallization and chain mobility of poly(L-lactide)[J]. Journal of Applied Polymer Science, 2015, 64(5):911-919.
[11] SCHMACK G, TANDLER B, VOGEL R, et al. Biodegradable fibers of poly(L-lactide) produced by high-speed melt spinning and spin drawing[J]. Journal of Applied Polymer Science, 2015, 73(14):2785-2797.
[12] WANG J H, SCHERTZ D M. Synthesis of grafted polylactic acid and polyhydroxyalkanoate by a green reactive extrusion process[M]//CHENG H N, GROSS RA. Green Polymer Chemistry:Biocatalysis and Biomaterials. American Chemical Society, 2010:439-453.
[13] RADANO C P, GREGORY L B, MILTON R S. Stereoselective polymerization of a racemic monomer with a racemic catalyst:  direct preparation of the polylactic acid stereocomplex from racemic lactide[J]. Journal of the American Chemical Society, 1996, 33(122):585-597.
[14] FERNANDEZ J, LARRANAGA A, ETXEBERRIA A, et al. Tensile behavior and dynamic mechanical analysis of novel poly(lactide/δ-valerolactone) statistical copolymers[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 35:39-50.
[15] MAO H, SHAN G, BAO Y, et al. Thermoresponsive physical hydrogels of poly(lactic acid)/poly(ethylene glycol) stereoblock copolymers tuned by stereostructure and hydrophobic block sequence[J]. Soft Matter, 2016, 12(20):4628-4637.
[16] SPINU M, JACKSON C, KEATING M Y, et al. Material design in poly(lactic acid) systems:block copolymers, star homo-and copolymers, and stereocomplexes[J]. Journal of Macromolecular Science-Part A:Pure and Applied Chemistry, 1996, 33(10):1497-1530.
[17] ZHU L, LIU F, YU X, et al. Poly(lactic acid) hemodialysis membranes with poly(lactic acid)-block-poly(2-hydroxyethyl methacrylate) copolymer as additive:preparation, characterization, and performance[J]. ACS Applied Materials & Interfaces, 2015, 7(32):17748-17755.
[18] ZENG X, WU B, WU L, et al. Poly(L-lactic acid)-block-poly(butylene succinate-co-butylene adipate) multiblock copolymers:from synthesis to thermo-mechanical properties[J]. Industrial & Engineering Chemistry Research, 2014, 53(9):3550-3558.
[19] SPENLEHAUER G, BAZILE D, VEILLARD M, et al. Polyoxyethylene-polylactic acid block copolymer nanoparticles:EP 0520888 A1[P]. 1992.
[20] NIU X F, TIAN F, LI Z W, et al. Synthesis and characterization of chitosan-graft-poly(lactic acid) copolymer[J]. Chinese Journal of Polymer Science, 2014, 32(1):43-50.
[21] RABINOVICH I B, NISTRATOV V P, BABINKOVA G, et al. Thermodynamic properties of polybutyleneglycol adipate[J]. Polymer Science, 1984, 26(4):826-831.
[22] FAINLEIB A, GRENET J, GARDA M R, et al. Poly(bisphenol A) cyanurate network modified with poly(butylene glycol adipate). Thermal and mechanical properties[J]. Polymer Degradation & Stability, 2003, 81(3):423-430.
[23] FAINLEI B A, GRYTSENKO V, SAITER J M, et al. Poly(bisphenol) cyanurate network modified with poly(butylene glycol adipate)[C]//World Forum on Polymer Applications and Theory "POLYCHAR-11". Denton, TX, USA, 2003.
[24] ZHANG D P. Modification of waterborne polyurethane adhesives with a silane coupling agent[J]. Journal of Beijing University of Chemical Technology, 2011, 38(5):81-85.
[25] XU H, ZHANG X, DAI J, et al. Study on preparation and properties of transparent waterborne polyurethane based on polyester polyols[J]. China Adhesives, 2012, (4):22-24.
[26] 戴红, 刘跃军, 谭海英, 等. 含PBSu和PBAu链段可降解聚酯酰脲的合成及性能研究[J]. 材料研究学报, 2016, 30(7):553-560. DAI H, LIU Y J, TAN H Y, et al. Synthesis and properties of polyester ureide multiblock copolymers composed of poly(butylene-succinate-uera) and poly(adipate-succinate-uera)[J]. Chinese Journal of Materials Research, 2016, 30(7):553-560.
[27] 刘跃军, 谢伟, 刘亦武, 等. 己二酸-1, 4-丁二醇-尿素共聚物的合成与表征[J]. 功能材料, 2012, 43(16):2176-2180. LIU Y J, XIE W, LIU Y W, et al. Synthesis, characterization of adipic acid-1,4-butanediol-urea copolymer[J]. Journal of Functional Materials, 2012, 43(16):2176-2180.
[28] 冯正洋. 可降解聚酯酰胺共聚物的制备及其性能研究[D]. 株洲:湖南工业大学, 2015. FENG Z Y. The preparation and performance of biodegradable polyester amide copolymers[D]. Zhuzhou:Hunan University of Technology, 2015.
[29] 刘跃军, 冯正洋, 戴红. 支化聚酯酰胺共聚物的合成、表征及相关性能研究[J]. 高校化学工程学报, 2017, 31(3):650-656. LIU Y J, FENG Z Y, DAI H. Synthesis, characterization and application of branched polyester amide copolymers[J]. Journal of Chemical Engineering of Chinese Universities, 2017, 31(3):650-656.
[30] 孙斌, 许静, 张其坤, 等. 乙交酯、L-丙交酯均聚物及其共聚物的制备和性能研究[J]. 高分子学报, 2014, 63(9):1274-1280. SUN B, XU J, ZHANG Q K, et al. Preparation and properties of polyglycolide, poly(L-lactide) and poly(L-lactide-co-glycolide)[J]. Acta Polymerica Sinica, 2014, 63(9):1274-1280.
[31] LAI S M, WU S H, LIN G G, et al. Unusual mechanical properties of melt-blended poly(lactic acid) (PLA)/clay nanocomposites[J]. European Polymer Journal, 2014, 52(1):193-206.
[32] SUMING L A, MCCARTHY S. Influence of crystallinity and stereochemistry on the enzymatic degradation of poly(lactide)s[J]. Macromolecules, 1999, 32(13):159-167.

[1] WANG Hanlin, WANG Deqiang, WANG Kai, LUO Guangsheng. Continuous synthesis of anisole in microreactor system [J]. CIESC Journal, 2019, 70(3): 922-928.
[2] YE Feifei, ZHANG Baodan, JIN Haibo, GUO Xiaoyan, HE Guangxiang, ZHANG Rongyue, GU Qingyang, YANG Suohe. Preparation of BaSO4 nanoparticles in microchannel reactor and its application in multifunctional layers of medical slices [J]. CIESC Journal, 2019, 70(3): 1179-1187.
[3] TANG Erjun, YAO Mengmeng, GUO Xiaofeng, WANG Ruihong, LIU Shaojie, GAO Hao. Film formation for aqueous epoxy acrylate latex coatings [J]. CIESC Journal, 2018, 69(S1): 143-147.
[4] HOU Zhenzhong, PENG Longgui, LI Ying, LU Hai, LU Ya, XIE Xiaoqin. Interfacial self-assembly synthesis and electrochemical capacitance of hierarchical porous polypyrrole films [J]. CIESC Journal, 2018, 69(9): 4121-4128.
[5] YU Lei, DAI Kangxu, LU Hao, FANG Yanxiong, CAO Hua, HAN Lifen, ZHAO Hongbin, LI Shijuan. Preparation and tribological properties of nitrogen-containing heterocyclic ester or amide derivatives [J]. CIESC Journal, 2018, 69(9): 4083-4089.
[6] ZHOU Feng, LIU Hongchen, WANG Kejun, WEN Zhenghui, CHEN Guangwen. Preparation of simple imidazoles in continuous-flow microreactor [J]. CIESC Journal, 2018, 69(6): 2481-2487.
[7] LÜ Xilei, RUAN Houhang, CHEN Hao, LÜ Xiuyang. Single-step Zr-SBA-15 catalytic conversion of furfural to ethyl levulinate in near-critical ethanol [J]. CIESC Journal, 2018, 69(6): 2488-2495.
[8] YUE Dongmin, ZHANG Qianzhi, SUN De, LI Bingbing, MAO Qinye, PENG Congkang. Preparation and properties of PVA/SO42--AAO catalytic-pervaporation difunctional membrane for ethyl acetate synthesis [J]. CIESC Journal, 2018, 69(6): 2775-2781.
[9] YE Feifei, GUO Xiaoyan, HOU Jing, LIU Xu, WANG Liangliang, WANG Ziyu, JIN Haibo. Synthesis of BaSO4 nanoparticles by double microemulsion method [J]. CIESC Journal, 2018, 69(6): 2767-2774.
[10] ZHANG Ao, YANG Haicun, MA Wenzhong, LI Yuxue, GONG Fanghong, TAO Guoliang, LIU Chunlin. Preparation of attapulgite/polystyrene hybrid particles via simultaneous reverse and normal initiation atom transfer radical polymerization [J]. CIESC Journal, 2018, 69(5): 2299-2308.
[11] ZHANG Jianli, WANG Xu, MA Liping, YU Xufei, MA Qingxiang, FAN Subing, ZHAO Tiansheng. Preparation of modified MgFeMn-HTLcs and catalytic performance in CO hydrogenation [J]. CIESC Journal, 2018, 69(5): 2073-2080.
[12] TANG Baokun, LI Jian, REN Qiang, WANG Chenyi. Synthesis and characterization of poly (3, 4-ethylenedioxythiophene) aqueous dispersions with low molecular weight poly (sodium styrene sulfonate) as template [J]. CIESC Journal, 2018, 69(5): 2309-2317.
[13] TAO Jun, ZHANG Jijun, MAO Xianhe, ZHAO Jianwei, ZHANG Dongliang, CAI Xinan. Thermodynamics analysis of in-container self-propagating high-temperature synthesis immobilization process using numerical simulation [J]. CIESC Journal, 2018, 69(5): 1846-1853.
[14] WU Nie, WAN Liying, LI Aimei, XIAO Chunping. Shape memory properties of mesogen-jacketed liquid crystalline polymers based on vinylterephthalic acid [J]. CIESC Journal, 2018, 69(5): 2282-2289.
[15] ZHAO Yanna, ZHAO Yao, ZHAO Chunyan, BAI Zhe, SHI Jianyu, KE Meidong. Preparation and properties of fluorescent waterborne polyurethane as paper sizing agent [J]. CIESC Journal, 2018, 69(4): 1783-1789.
Full text



No Suggested Reading articles found!