CIESC Journal ›› 2018, Vol. 69 ›› Issue (9): 4012-4018.doi: 10.11949/j.issn.0438-1157.20180228

Previous Articles     Next Articles

Reaction and regeneration behavior of melamine with SO2

HU Xiaowei, LÜ Li, LIANG Bin, QIU Liyou, YUAN Shaojun, ZHENG Dongyao   

  1. School of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China
  • Received:2018-03-05 Revised:2018-04-29 Online:2018-09-05 Published:2018-05-17
  • Supported by:

    supported by the Sichuan Science and Technology Plan Project (2017GZ0377).

Abstract:

The reaction and regeneration behavior of melamine (MN), a kind of solid organic amine, with SO2 was studied. The results show that MN desulfurization rate is above 99% for 140 min at simulated flue gas:0.35%SO2+ 5%O2 + N2, 40℃ and 4% MN (mass fraction). Meanwhile, the breakthrough sulfur capacity (200 mg/m3 SO2 in outlet flue gas) is 0.33g SO2/(g MN). The analysis of MN desulfurization and regeneration products by XRD, FTIR, SEM and TG-MS shows that MN reacts with SO2 to produce melamine sulfite firstly, and then melamine sulfite is oxidized to melamine sulfate partly by oxygen in the flue gas. Adding 0.1% p-diphenylamine can effectively inhibit the melamine sulfite to be oxidized. Melamine sulfite can be heated and regenerated in 75-150℃, but the melamine sulfate cannot be regenerated by heating. The oxidation rate of melamine sulfite decreased from 36% at 5%O2 to 13% at 5%O2+ 0.1% p-diphenylamine. When products were heated at 150℃ for 2 h desulfurization, the regeneration rate of melamine increased from 58% at 5%O2 to 94% at 5%O2+ 0.1% p-diphenylamine. MN has excellent desulfurization and regeneration performance in the anti-oxidation mode.

Key words: flue gas desulfurization, organic amine, melamine, oxidation, regeneration

CLC Number: 

  • O626.43

[1] WU W, HAN B, GAO H, et al. Desulfurization of flue gas:SO2 absorption by an ionic liquid[J]. Angewandte Chemie, 2004, 43(18):2415-2417.
[2] LIU Y, CHE D, XU T. The effects of indigenous minerals in a coal on the emissions of NO and SO2, during combustion[J]. Combustion & Flame, 2004, 138(4):404-406.
[3] CAIAZZO G, NARDO A D, LANGELLA G, et al. Seawater scrubbing desulfurization:a model for SO2 absorption in fall-down droplets[J]. Environmental Progress & Sustainable Energy, 2012, 31(2):277-287.
[4] 王金南, 雷宇, 宁淼. 实施《大气污染防治行动计划》:向PM2.5宣战[J]. 环境保护, 2014, 42(6):28-31. WANG J N, LEI Y, NING M. Implement the air pollution prevention action plan:declaring war on PM2.5[J]. Environmental Protection, 2014, 42(6):28-31.
[5] WARYCH J, SZYMANOWSKI M. Optimum values of process parameters of the "wet limestone flue gas desulfurization system"[J]. Chemical Engineering & Technology, 2015, 25(4):427-432.
[6] MA X, KANEKO T, TASHIMO T. Use of limestone for SO2 removal from flue gas in the semidry FGD process with a powder-particle spouted bed[J]. Chemical Engineering Science, 2000, 55(20):4643-4652.
[7] ORTIZ F J G, VIDAL F, OLLERO P, et al. Pilot-plant technical assessment of wet flue gas desulfurization using limestone[J]. Industrial & Engineering Chemistry Research, 2006, 45(4):1466-1477.
[8] BROGREN C, KARLSSON H T. A model for prediction of limestone dissolution in wet flue gas desulfurization applications[J]. Ind. Eng. Chem. Res., 1997, 36(9):3889-3897.
[9] GAO X, DING H L, DU Z, et al. Gas-liquid absorption reaction between (NH4)2SO3 solution and SO2 for ammonia-based wet flue gas desulfurization[J]. Applied Energy, 2010, 87(8):2647-2651.
[10] JIA Y, ZHONG Q, FAN X, et al. Kinetics of oxidation of total sulfite in the ammonia-based wet flue gas desulfurization process[J]. Chemical Engineering Journal, 2010, 164(1):132-138.
[11] PAN D, YU R, BAO J, et al. Emission and formation characteristics of aerosols from ammonia-based wet flue gas desulfurization[J]. Energy & Fuels, 2016, 30(1):666-673.
[12] YAN J, BAO J, YANG L, et al. The formation and removal characteristics of aerosols in ammonia-based wet flue gas desulfurization[J]. Journal of Aerosol Science, 2011, 42(9):604-614.
[13] TAILOR R, ABBOUD M, SAYARI A. Supported polytertiary amines:highly efficient and selective SO2 adsorbents[J]. Environmental Science & Technology, 2014, 48(3):2025-2034.
[14] DEMYANOVICH R J, LYNN S. Prediction of infinite dilution activity coefficients of sulfur dioxide in organic solvents[J]. Journal of Solution Chemistry, 1991, 20(7):693-701.
[15] CHENG Y, LI J. Method for detecting loss of desulfurization organic components and regenerable flue gas deslufurization process:US20140322117[P]. 2014.
[16] SIDI-BOUMEDINE R, HORSTMANN S, KAI F, et al. Experimental determination of hydrogen sulfide solubility data in aqueous alkanolamine solutions[J]. Fluid Phase Equilibria, 2013, 218(1):149-155.
[17] NAGEL D, KERMADEC R D, LINTZ H G, et al. Absorption of sulfur dioxide in N-formylmorpholine:investigations of the kinetics of the liquid phase reaction[J]. Chemical Engineering Science, 2002, 57(22/23):4883-4893.
[18] TANG Z G, ZHOU C C, CHEN C. Studies on flue gas desulfurization by chemical absorption using an ethylenediamine-phosphoric acid solution[J]. Industrial & Engineering Chemistry Research, 2004, 43(21):6714-6722.
[19] CHAPMAN R P, AVERELL P R, HARRIS R R. Solubility of melamine in water[J]. Ind. Eng. Chem., 2002, 35:137-138.
[20] DUDLEY J R. Cyanuric chloride derivatives(Ⅸ):Dissociation constants of substituted melamines and related triazines[J]. Journal of the American Chemical Society, 1951, 73(7):3007-3008.
[21] JÜRGENS B, IRRAN E, SENKER J, et al. Melem (2,5,8-triamino-tri-s-triazine), an important intermediate during condensation of melamine rings to graphitic carbon nitride:  synthesis, structure determination by X-ray powder diffractometry, solid-state NMR, and theoretical studies[J]. Journal of the American Chemical Society, 2003, 125(34):10288-10300.
[22] GAUTNEY J, KIM Y K, HATFIELD J D. Melamine:a regenerative SO2 absorbent[J]. Journal of the Air Pollution Control Association, 1982, 32(3):260-265.
[23] UCHIDA S, MIYAZAKI M, MASUMOTO S. Absorption of sulfur dioxide into melamine slurry[J]. Chemical Engineering Science, 1984, 39(10):1527-1528.
[24] 江礼科, 邱礼有, 陈仕刚. MN法回收低浓度SO2的试验研究[J]. 硫酸工业, 1986, (6):18-22. JIANG L K, QIU L Y, CHEN S G. Experimental study on recovery of low concentration SO2 by MN[J]. Sulfuric Acid Industry, 1986, (6):18-22.
[25] 邱礼有, 严升春, 江礼科. 蜜胺浆液吸收低浓度SO2动力学研究[J]. 四川大学学报(工程科学版), 1990, (4):113-119. QIU L Y, YAN S C, JIANG L K. Kinetics of absorption of sulfur dioxide into melamine slurry[J]. Journal of Sichuan University (Engineering Science Edition), 1990, (4):113-119.
[26] LIU Y J, QU Y F, GUO J X, et al. Thermal regeneration of manganese supported on activated carbons treated by HNO3 for desulfurization[J]. Energy & Fuels, 2015, 29(3):1931-1940.
[27] GUO J X, LIU X L, LUO D M, et al. Influence of calcination temperatures on the desulfurization performance of Fe supported activated carbons treated by HNO3[J]. Industrial & Engineering Chemistry Research, 2015, 54(4):1261-1270.
[28] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 石膏化学分析方法:GB/T 5484-2012[S]. 北京:中国标准出版社, 2012. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Method of chemical analysis of gypsum:GB/T 5484-2012[S]. Beijing:Standards Press of China, 2012.
[29] KOHLER J J, GAUTNEY J, KIM Y K, et al. Removal and recovery of sulfur oxides from gas streams with melamine:US4139597A[P]. 1979.
[30] 翁诗甫. 傅里叶变换红外光谱分析[M]. 2版. 北京:化学工业出版社, 2010. WENG S P. Fourier Transform Infrared Spectroscopy[M]. 2nd ed. Beijing:Chemical Industry Press, 2010.

[1] GUO Wanwan, LI Ruyue, HUANG Jun. Copper catalyst supported on cross-linked phenanthroline for oxidative synthesis of 2,3,5-trimethyl-1,4-benzoquinone [J]. CIESC Journal, 2019, 70(3): 929-936.
[2] HE Shuai, GUO Feng, KANG Guojun, YU Jian, REN Xuefeng, XU Guangwen. Preparation of palladium-based catalysts by complexing-solvothermal method and catalytic oxidation of m-xylene [J]. CIESC Journal, 2019, 70(3): 937-943.
[3] LI Yanying, LI Xianchun. Biomass activated carbon loaded with zero-valent iron nanocrystal clusters for direct catalytic reduction of NO [J]. CIESC Journal, 2019, 70(3): 1111-1119.
[4] YIN Fei, WANG Cui, TONG Shaoping. Treatment of acid red 73 by persulfate in the presence of rGO-Fe3O4 composite [J]. CIESC Journal, 2019, 70(1): 207-213.
[5] WEN Xiantai, YU Jiao, CAO Xianqi, YU Pengfei, CAI Ning, MAO Yifan. Experimental study of a novel solution regeneration system for heat-source tower under unsteady state [J]. CIESC Journal, 2019, 70(1): 83-90.
[6] XUE Chao, MAO Yanpeng, WANG Wenlong, SONG Zhanlong, ZHAO Xiqiang, SUN Jing, WANG Yanxiang. Treatment of phenol wastewater by microwave catalytic wet oxidation under high pressure [J]. CIESC Journal, 2018, 69(S2): 210-217.
[7] WANG Mu, YIN Yonggao, GUO Xiaoshuang, CHEN Tingting. Alternative scheme and dehumidification and regeneration performance validation for economic multi-component solution [J]. CIESC Journal, 2018, 69(S2): 420-424.
[8] YAO Yingying, GUO Li, HU Zhongqiu, QUAN Qu, DU Dongyun. Separation of copper and arsenic in copper smelting dust by Na2S-NaOH leaching assisted with ultrasound method [J]. CIESC Journal, 2018, 69(9): 3983-3992.
[9] ZHAO Haiqian, DONG Ming, WANG Huaiyuan, LIU Lijun, LI Dong, LIU Xiaoyan. Characteristics and product generation pathway of NO oxidation by H2O2 thermal decomposition in different size reactors [J]. CIESC Journal, 2018, 69(9): 4037-4043.
[10] GENG Lili, YANG Kaixu, ZHANG Nuowei, CHEN Binghui. Synergetic effect of Ru and Cu on catalytic wet oxidation of ammonia-wastewater [J]. CIESC Journal, 2018, 69(9): 3869-3878.
[11] WU Yun, DU Xiaolei, SONG Kai, LIU Hongyu, WANG Jie, WANG Erpo. Numerical simulation analysis of flow characteristics of suspended packing in biological contact oxidation tank [J]. CIESC Journal, 2018, 69(7): 3242-3248.
[12] WEN Yujuan, YANG Yuesuo, SONG Xiaoming, ZHANG Xi, LI Huizhong. Characteristics of p-nitrophenol removal by SAT system with iron oxide coated sands [J]. CIESC Journal, 2018, 69(7): 3059-3067.
[13] ZHANG Liang, LIU Xiaochen, LIU Guiyan, LÜ Bo, FENG Xudong, LI Chun. Energy drive and regeneration in biotransformation [J]. CIESC Journal, 2018, 69(7): 2807-2814.
[14] JI Ruijun, XU Wenqing, WANG Jian, YAN Chaoyu, ZHU Tingyu. Research progress of ozone oxidation denitrification technology [J]. CIESC Journal, 2018, 69(6): 2353-2363.
[15] ZHOU Changsong, YANG Hongmin, SUN Jiaxing, QI Dongxu, MAO Lin, SONG Zijian, SUN Lushi. Mechanism of Hg removal by gaseous advanced oxidation process with Fe3O4 and H2O2 [J]. CIESC Journal, 2018, 69(5): 1840-1845.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!