CIESC Journal ›› 2018, Vol. 69 ›› Issue (11): 4737-4745.doi: 10.11949/j.issn.0438-1157.20180215

Previous Articles     Next Articles

Liquid-phase oxidation kinetics of sec-butylbenzene

DONG Jian, ZHANG Shenglu, SUN Weizhen, XU Zhimei, ZHAO Ling   

  1. State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
  • Received:2018-02-27 Revised:2018-04-10 Online:2018-11-05 Published:2018-04-11
  • Supported by:

    supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, the National Natural Science Foundation of China (61333010) and the 111 Project (B08021).

Abstract:

Preparation of sec-butylbenzene peroxide (SBBHP) by liquid-phase oxidation of sec-butylbenzene (SBB) in absence of catalyst is a key step in production of phenol and methyl ethyl ketone. Based on free radical chain reaction mechanism of hydrocarbon oxidation, SBB oxidation kinetic model was established under oxygen-enriched and oxygen-limited conditions, including reactant SBB, main product SBBHP, and side products acetophenone (ACP) and 2-phenyl butanol (PBO). Rate constants and activation energies of corresponding elementary steps were obtained by fitting experimental data at various conditions of 388-403 K. The results showed that, due to steric hindrance effect, activation energy of main reaction of SBB to SBBHP was larger than that of isopropyl benzene (IPB) to IPB hydroperoxide (IPBHP). Continuous process experiments further verified reliability of the kinetic model. These results may be useful for design and optimization of SBB liquid-phase oxidation to SBBHP, and helpful to understand oxidation mechanism of aromatic hydrocarbons.

Key words: sec-butylbenzene, liquid-phase oxidation, kinetic models, sec-butylbenzene hydroperoxide

CLC Number: 

  • TQ013.2

[1] Suresh A K, Sharma†Man M, Sridhar T. Engineering aspects of industrial liquid-phase air oxidation of hydrocarbons[J]. Industrial & Engineering Chemistry Research, 2000, 39(11):3958-3997.
[2] Emanuel N M, Zaikov G E. Oxidation of Organic Compounds:Medium Effects in Radical Reactions[M]. Amsterdam:Elsevier, 1984.
[3] Andrigo P, Caimi A, dOro P C, et al. Phenol-acetone process:cumene oxidation kinetics and industrial plant simulation[J]. Chemical Engineering Science, 1992, 47(9/10/11):2511-2516.
[4] Bhattacharya A. Kinetic modeling of liquid phase autoxidation of cumene[J]. Chemical Engineering Journal, 2008, 137(2):308-319.
[5] Krongauz V V, O'Connell J F, Ling M T K. Kinetics of catalyst-free thermal and photo-oxidation of cumene[J]. Journal of Thermal Analysis & Calorimetry, 2014, 116(3):1285-1299.
[6] Reichardt C, Welton T. Solvents and Solvent Effects in Organic Chemistry[M]. New York:John Wiley & Sons, 2011.
[7] Sun W, Pan Y, Zhao L, et al. Simplified free-radical reaction kinetics for p-xylene oxidation to terephthalic acid[J]. Chemical Engineering & Technology, 2010, 31(10):1402-1409.
[8] Shang J, Sun W, Zhao L, et al. Modeling of CO2-assisted liquid phase oxidation of para-xylene catalyzed by transition metals/bromide[J]. Chemical Engineering Science, 2015, 127: 52-59.
[9] Sun W, Ling Z. Simulation of secondary oxidation of p-xylene in liquid phase[J]. Industrial & Engineering Chemistry Research, 2010, 50(5):2548-2553.
[10] Sun W, Sun J, Xu Z, et al. Experimental study and modeling of homogenous catalytic oxidation of m-xylene to isophthalic acid[J]. Industrial & Engineering Chemistry Research, 2015, 54(13):3293-3298.
[11] 裘俊峰, 许志美, 赵玲, 等. 高效液相色谱法分析环己基苯液相氧化体系的组成[J]. 石油化工, 2016, 45(8):910-914. QIU J F, XU Z M, ZHAO L, et al. Analysis of the cyclohexylbenzene oxidation system by high performance liquid chromatography[J]. Petrochemical Technology, 2016, 45(8):910-914.
[12] 万骏. 间二甲苯液相催化氧化制备间苯二甲酸反应过程研究[D]. 上海:华东理工大学, 2004. WAN J. Reaction process research on preparation of isophthalic acid by MX liquid-phase catalytic oxidation[D]. Shanghai:East China University of Science and Technology, 2004.
[13] Marl G F, Sheldon R A. Chemical Reactions/Oxidation[M]//Ullmann's Encyclopedia of Industrial Chemistry. Weinheim:Wiley-VCH, 2007:1-58.
[14] Russell G A. Oxidation of unsaturated compunds(Ⅲ):Products of the reaction of indene and oxygen; stereochemistry of the addition of a peroxy radical and oxygen to a double bond[J]. Journal of the American Chemical Society, 1956, 78(5):1035-1040.
[15] Sheldon R. Metal-catalyzed Oxidations of Organic Compounds:Mechanistic Principles and Synthetic Methodology Including Biochemical Processes[M]. Amsterdam:Elsevier, 2012.
[16] Hattori K, Tanaka Y, Suzuki H, et al. Kinetic of liquid fase oxidation of cumene in bubble column[J]. Journal of Chemical Engineering of Japan, 1970, 3(1):72-78.
[17] Bamford C H, Dewar M J S. The autoxidation of tetralin[J]. Proceedings of the Royal Society A Mathematical Physical & Engineering Sciences, 1949, 198(1053):252-267.
[18] Cao G, Servida A, Pisu M, et al. Kinetics of p-xylene liquid-phase catalytic oxidation[J]. AIChE Journal, 1994, 40(7):1156-1166.
[19] Hendry D G. Rate constants for oxidation of cumene[J]. Journal of the American Chemical Society, 1967, 89(21):5433-5438.
[20] Traylor T G, Russell C A. Mechanisms of autoxidation. Terminating radicals in cumene autoxidation[J]. Journal of the American Chemical Society, 1965, 87(16):3698-3706.
[21] Melville H W, Richards S. The photochemical autoxidation of iso-propylbenzene[J]. Journal of the Chemical Society (Resumed), 1954:944-952.
[22] Thomas J R. The thermal decomposition of alkyl hydroperoxides[J]. Journal of the American Chemical Society, 1955, 77(1):246-248.
[23] Feng W, Vynckier E, Froment G F. Single event kinetics of catalytic cracking[J]. Industrial & Engineering Chemistry Research, 1993, 32(12):2997-3005.
[24] Quintana-Sólorzano R, Thybaut J W, Marin G B. A single-event microkinetic analysis of the catalytic cracking of (cyclo) alkanes on an equilibrium catalyst in the absence of coke formation[J]. Chemical Engineering Science, 2007, 62(18/19/20):5033-5038.
[25] Toch K, Thybaut J W, Vandegehuchte B D, et al. A single-event microkinetic model for "ethylbenzene dealkylation/xylene isomerization" on Pt/H-ZSM-5 zeolite catalyst[J]. Applied Catalysis A:General, 2012, 425:130-144.
[26] 黄华江. 实用化工计算机模拟:MATLAB在化学工程中的应用[M]. 北京:化学工业出版社, 2004. HUANG H J. Practical Chemical Computer Simulation:Application of MATLAB in Chemical Engineering[M]. Beijing:Chemical Industry Press, 2004.
[27] Hattori K, Tanaka Y, Suzuki H, et al. Kinetics of liquid phase oxidation of cumene in bubble column[J]. Journal of Chemical Engineering of Japan, 1970, 3(1):72-78.
[28] Low D I R. The unsteady state absorption of oxygen in cumene[J]. The Canadian Journal of Chemical Engineering, 1967, 45(3):166-170.
[29] Steele W V, Chirico R D, Knipmeyer S E, et al. Vapor pressure, heat capacity, and density along the saturation line:measurements for benzenamine, butylbenzene, sec-butylbenzene, tert-butylbenzene, 2,2-dimethylbutanoic acid, tridecafluoroheptanoic acid, 2-butyl-2-ethyl-1,3-propanediol, 2,2,4-trimethyl-1,3-pentanediol, and 1-chloro-2-propanol[J]. Journal of Chemical & Engineering Data, 2002, 47(4):648-666.
[30] Bateman L, Gee G. Determination of absolute rate constants for olefinic oxidations by measurement of photochemical pre-and after-effects(Ⅰ):At "high" oxygen pressures[J]. Transactions of the Faraday Society, 1951, 47:155-164.

[1] MA Yunqian, YU Meiqing. Desulfurization performance of heteropolyacid with functionalized ionic liquids as solvents [J]. CIESC Journal, 2016, 67(S1): 302-306.
[2] JIN Shaojin, CHEN Jizhong. Catalytic performance of Co(acac)2 catalyst for liquid-phase oxidation of toluene by air [J]. CIESC Journal, 2013, 64(4): 1256-1262.
[3] ZHANG Xu,GUO Jinbiao,ZHOU Xiang,WANG Xinlei,GE Caixia,YU Bo. Application of molecular level kinetic modeling to catalytic cracking reaction [J]. Chemical Industry and Engineering Progree, 2012, 31(12): 2678-2685.
[4] WU Juanjuan,MENG Lifen,MAO Liqiu,YIN Dulin. Liquid-phase oxidation of toluene to benzaldehyde on Cr(Ⅲ)/HMS catalyst [J]. Chemical Industry and Engineering Progree, 2012, 31(07): 1512-1516.
[5] KUANG Wenjuan,KAO Hongtao,REN Bin,GUO Tao,LI Aili. Research progress of cyclic absorbing CO2 technology with Ca-based sorbents [J]. , 2011, 30(6): 1356-.
[6] QIU Nianhai,SHI Yunguo,SONG Hua. Modified-VPO catalyst for liquid-phase selective oxidation of cyclohexane [J]. , 2010, 29(8): 1474-.
[7] SONG Hua,WANG Yuanyuan,LIU Siyu,ZHANG Jinzhao,SUN Xinglong. Preparation of acetophenone from ethylbenzene by oxygen oxidation with manganese sulfate catalysis [J]. , 2009, 28(6): 971-.
[8] TANG Shengwei, SHEN Wei, LIANG Bin. Influences of the [Co2+]/[Co3+] Ratio on the Process of Liquid-phase Oxidation of Toluene by Air [J]. , 2009, 17(4): 613-617.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] CAI Wangfeng, LI Xia, XU Chunjian, ZHOU Ming. Enhancement of gas-liquid mass transfer of reactive slurry[J]. CIESC Journal, 2005, 56(4): 579 -586 .
[2] CHEN Weidong, SUN Yan. EFFECT OF ADSORPTION DENSITY ON PORE DIFFUSIVITY OF PROTEINS IN ION EXCHANGER[J]. CIESC Journal, 2003, 54(2): 215 -220 .
[3] WEI Rongqing, WANG Haiping, SHEN Bin, LIU Xiaoning, OUYANG Pingkai. Effect of nitrobenzene on preparation of carboxyl polystyrene by Friedel-Crafts acylation reaction[J]. CIESC Journal, 2005, 56(7): 1230 -1235 .
[4] ZHOU Xinjian, CHEN Tingkuan. DETERMINATION OF FLOW RATE COEFFICIENT OF JET EXHAUSTING ATOMIZATION NOZZLE[J]. CIESC Journal, 2002, 53(10): 1092 -1094 .
[5] LIU Yang, XIE Jianjun, ZHANG Xinying. SYNTHESIS AND SWELLING PROPERTIES OF NOVEL SUPERABSORBENT POLYMER[J]. CIESC Journal, 2003, 54(5): 721 -723 .
[6] SUN Qinglei, LI Wen, LI Baoqing. RELATIONSHIP BETWEEN VOLATILE YIELD AND PETROGRAPHIC ANALYSIS DURING PYROLYSIS OF SHENMU MACERALS[J]. CIESC Journal, 2003, 54(2): 269 -272 .
[7] LIU Naihui, LIU Hui, LI Chengyue, CHEN Biaohua, XU Chunming. CORRELATIONS FOR PREDICTION OF PRESSURE DROP AND LIQUID HOLDUP IN LOW AND HIGH PRESSURES TRICKLE BEDS[J]. CIESC Journal, 2003, 54(4): 543 -548 .
[8] WANG Baojun, ZHANG Yugui, XIE Kechang. APPLICATION OF QUANTUM CHEMISTRY CALCULATION TO INVESTIGATION ON COAL STRUCTURE AND REACTIVITY[J]. CIESC Journal, 2003, 54(4): 477 -488 .
[9] LIU Yang, LU Huilin, LIU Wentie, ZHAO Yunhua. MODEL AND SIMULATION OF GAS-SOLIDS FLOW WITH WIDE SIZE DISTRIBUTIONS IN CIRCULATING FLUIDIZED BEDS[J]. CIESC Journal, 2003, 54(8): 1065 -1071 .
[10] ZHAO Zongbin, LI Wen, LI Baoqing. EFFECT OF MINERAL MATTER ON RELEASE OF NO DURING COAL CHAR COMBUSTION[J]. CIESC Journal, 2003, 54(1): 100 -106 .