CIESC Journal ›› 2018, Vol. 69 ›› Issue (9): 4090-4096.doi: 10.11949/j.issn.0438-1157.20180214

Previous Articles     Next Articles

Synthesis and properties of hierarchical structure silver micro-nanocrystals

NIE Shidong1,3, LI Jiangtao2, ZHANG Zhiying1, LIU Yun1, LIU Chunyan1   

  1. 1. Key Laboratory of Photochemical Conversion and Optoelectonic Materials, Technical Institute of Physics and Chemistry(TIPC), Chinese Academy of Sciences, Beijing 100190, China;
    2. Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry(TIPC), Chinese Academy of Sciences, Beijing 100190, China;
    3. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2018-02-27 Revised:2018-04-04 Online:2018-09-05 Published:2018-04-24
  • Supported by:

    supported by the National Natural Science Foundation of China (21273256).

Abstract:

The flower-like and dendritic silver micro-nanocrystals with multi-stage structure were prepared by liquid phase reduction method by adjusting the molar ratio of oxidant silver nitrate to reducing agent ascorbic acid. The effects of reaction media on the size and morphology of silver crystallite was investigated. The morphology, crystal structure, optical and catalytic properties of the products were studied by scanning electron microscopy (SEM), X-ray diffraction (XRD), surface enhanced Raman scattering spectroscopy (SERS) and UV-Vis reflectance spectroscopy (UV-Vis). The XRD results show that both the flower-like and dendritic silver micro-nanocrystals have face-centered cubic crystal structure, and (111) plane is the dominant crystal plane exposed on the surface of Ag crystals. The SERS surveys show that the hierarchical structure Ag micro-nanocrystals are excellent substrates for SERS. The UV-Vis diffuse reflectance spectra shows that the dendritic silver has a strong absorption peak at 352 nm because of the finer microstructure. The catalytic reduction experiment of 4-nitrophenol by sodium borohydride on the silver crystals reveals that the dendritic silver shows excellent catalytic activity.

Key words: preparation, hierarchical structures, silver, morphology, SERS, catalysis

CLC Number: 

  • O69

[1] SAJANLAL P R, SREEPRASAD T S, NAIR A S, et al. Wires, plates, flowers, needles, and core-shells:diverse nanostructures of gold using polyaniline templates[J]. Langmuir, 2008, 24:4607-4614.
[2] 王辉. 微纳银粉的可控制备[D]. 武汉:华中科技大学, 2011. WANG H. Controlled synthesis of silver micro/nano-particles[D]. Wuhan:Huazhong University of Science & Technology, 2011.
[3] WANG L, IMURA M, YAMAUCHI Y. Tailored design of architecturally controlled Pt nanoparticles with huge surface areas toward superior unsupported Pt electrocatalysts[J]. ACS Appl. Mater. Interfaces, 2012, 4:2865-2869.
[4] 茹婷婷, 初学峰, 石莹岩, 等. 钯纳米粒子的形貌可控合成与催化性能[J]. 无机化学学报, 2017, 33(10):1835-1842. RU T T, CHU X F, SHI Y Y, et al. Shape-controlled synthesis of Pd nanocrystals with remarkable enhanced catalytic performance[J]. Chinese Journal of Inorganic Chemistry, 2017, 33(10):1835-1842.
[5] JIN R C, CAO Y W, MIRKIN C A, et al. Photo induced conversion of silver nanospheres to nanoprisms[J]. Science, 2001, 294:1901-1903.
[6] JIN R C, CAO Y W, HAO E C, et al. Controlling anisotropic nanoparticle growth through plasmon excitation[J]. Nature, 2003, 425:487-490.
[7] KELL K L, CORONADO E, ZHAO L L, et al. The optical properties of metal nanoparticles:the influence of size, shape, and dielectric environment[J]. J. Phys. Chem. B, 2003, 107:668-677.
[8] NOGUCZ C. Surface plasmons on metal nanoparticles:the influence of shape and physical environment[J]. J. Phys. Chem. C, 2007, 111:3806-3819.
[9] TANG B, LI J, HOU X, et al. Colorful and antibacterial silk fiber from anisotropic silver nanoparticles[J]. Ind. Eng. Chem. Res., 2013, 52:4556-4563.
[10] HAJIZADEH S, FARHADI K, FOROUGH M, et al. Silver nanoparticles as a cyanide colorimetric sensor in aqueous media[J]. Anal. Methods, 2011, 3:2599-2603.
[11] YAN J, HAN X, HE J, et al. Highly sensitive surface-enhanced Raman spectroscopy (SERS) platforms based on silver nanostructures fabricated on polyaniline membrane surfaces[J]. ACS Appl. Mater. Interfaces, 2012, 4:2752-2756.
[12] YUAN G, CHANG X, ZHU G. Electrosynthesis and catalytic properties of silver nano/microparticles with different morphologies[J]. Particuology, 2011, 9:644-649.
[13] WNAG Y, WAN D, XIE S, et al. Synthesis of silver octahedra with controlled sizes and optical properties via seed-mediated growth[J]. ACS Nano, 2013, 7(5):4586-4594.
[14] TAO A, SINSERMSUKSAKUL P, YANG P. Polyhedral silver nanocrystals with distinct scattering signatures[J]. Angew. Chem. Int. Ed., 2006, 45:4597-4601.
[15] CHEN Y, GUAN J G, XIE H Q. An efficient way to prepare silver nanorods in high concentration by polyol method without adding other metal or salt[J]. Materials Chemistry and Physics, 2012, 134:686-694.
[16] HASSE U, PALM G J, HINRICHS W, et al. The growth of single crystal silver wires at the nitrobenzene|water interface[J]. Phys. Chem. Chem. Phys., 2011, 13:12254-12260.
[17] 俞豪杰, 李晓晓, 王立. 在NiCl2、MnCl2或FeCl3存在下用多元醇法高浓度合成银纳米线[J]. 化工学报, 2013, 64(2):749-755. YU H J, LI X X, WANG L. High AgNO3 concentration synthesis of silver nanowires by polyol method in presence of NiCl2, MnCl2 or FeCl3[J]. CIESC Journal, 2013, 64(2):749-755.
[18] ZHAO, H, NING Y, ZHAO B, et al. Tunable growth of silver nanobelts on monolithic activated carbon with size-dependent plasmonic response[J]. Sci. Rep., 2015, 5:13587.
[19] LIU B, LUO W, ZHAO X. A facile synthesis of ordered ultralong silver nanobelts[J]. Materials Research Bulletin, 2009, 44:682-687.
[20] ADIANEZ G L, JOSE V G R, SANTIAGO S C. Silver nanostars with high SERS performance[J]. J. Phys. Chem. C, 2013, 117:7791-7795.
[21] LIANG H, YANG H, WANG W, et al. High-yield uniform synthesis and microstructure-determination of rice-shaped silver nanocrystals[J]. J. Am. Chem. Soc., 2009, 131:6068-6069.
[22] ZHANG J, LI S, WU J, et al. Plasmon-mediated synthesis of silver triangular bipyramids[J]. Angew. Chem., 2009, 121:7927-7931.
[23] LIU T, LI D, YANG D, et al. Fabrication of flower-like silver structures through anisotropic growth.[J]. Langmuir, 2011, 27:6211-6217.
[24] HSIAO W H, CHEN H Y, YANG Y C, et al. Surface-enhanced Raman scattering imaging of a single molecule on urchin-like silver nanowires[J]. ACS Appl. Mater. Interfaces, 2011, 3:3280-3284.
[25] WU W T, PANG W, XU G, et al. In situ formation of Ag flowerlike and dendritic nanostructures in aqueous solution and hydrolysis of an amphiphilic block copolymer[J]. Nanotechnology, 2005, 16:2048-2051.
[26] LIANG H, LI Z, WANG W, et al. Highly surface-roughened "flower-like" silver nanoparticles for extremely sensitive substrates of surface-enhanced Raman scattering[J]. Adv. Mater., 2009, 21(45):4614-4618.
[27] HONG L, LI Q, LIN H, et al. Synthesis of flower-like silver nanoarchitectures at room temperature[J]. Mater. Res. Bull., 2009, 44:1201-1204.
[28] LEI F, GUO R. Growth of dendritic silver crystals in CTAB/SDBS mixed-surfactant solutions[J]. Crystal Growth & Design, 2008, 8(7):2150-2156.
[29] YANG J, QI L, ZHANG D, et al. Dextran-controlled crystallization of silver microcrystals with novel morphologies[J]. Crystal Growth & Design, 2004, 4(6):1371-1375.
[30] NIE S, LIU C, ZHANG Z, et al. Nitric acid-mediated shape-controlled synthesis and catalytic activity of silver hierarchical microcrystals[J]. RSC Adv., 2016, 6:21511-21516.
[31] 蔡兰坤, 张东曙, 王桂华, 等. 防止银器文物变色的唑系复合缓蚀剂(Ⅱ):SERS法研究唑系缓蚀剂防银变色的作用机理[J]. 华东理工大学学报(自然科学版), 2002, 28(3):269-273. CAI L K, ZHANG D S, WANG G H, et al. Azoles as composite corrosion inhibitor for anti-tarnishing of silver antiques(Ⅱ):Mechanism of the azoles for anti-tarnishing of silver[J]. Journal of East China University of Science and Technology(Natural Science Edition), 2002, 28(3):269-273.

[1] ZHANG Lanhe, ZHANG Mingshuang, GUO Jingbo, JIA Yanping, LI Zheng, CHEN Zicheng. Transformation of Fe3+ and its effect on anoxic sludge flocculation in A2O process [J]. CIESC Journal, 2019, 70(3): 1089-1098.
[2] ZHOU Qiang, HAO Junzheng, ZHU Linhua, WANG Hong, SI Tian, HE Yanping, SUN Yanlin. Foam phase preparation of porous poly(methyl methacrylate-co-butyl acrylate) microspheres in continuous process [J]. CIESC Journal, 2019, 70(3): 1208-1219.
[3] DUAN Yunbiao, XU Cunying, WANG Xiang, LIU Hai, HUANG Mengting. Synthesis of Fe3+-doped ZnO nanostructures by antisolvent precipitation method and their visible photocatalytic activity [J]. CIESC Journal, 2019, 70(3): 1198-1207.
[4] LIANG Tianshui, WANG Zongying, GAO Kun, LI Runwan, WANG Zheng, ZHONG Wei, ZHAO Jun. Analysis of fire suppression effectiveness of ultra-fine water mist containing iron compounds additives in cup burner [J]. CIESC Journal, 2019, 70(3): 1236-1242.
[5] BAI Junren, YI Jun, LI Qian, WU Ling, CHEN Xuemei. Multi-objective optimization of QPSO for thereaction-regeneration process [J]. CIESC Journal, 2019, 70(2): 750-756.
[6] CAI Jingtao, LI Daixi, LIU Baolin, LUAN Hansen, GUO Baisong, WEI Dongqing, WANG Hao. Controllable crystallization of urea (520) crystal plane by molecular simulation [J]. CIESC Journal, 2019, 70(1): 128-135.
[7] ZHU Yi, WANG Hao, CHEN Liping, GUO Zichao, HE Zhongqi, CHEN Wanghua. Calculate time to maximum rate under adiabatic condition by numerical calculation method [J]. CIESC Journal, 2019, 70(1): 379-387.
[8] CHEN Chen, WANG Ying, LIU Hong, CHEN Yan, YAO Mingdong, XIAO Wenhai. Exploring the key structural properties affecting the function of multi-step phytoene dehydrogenase CrtI [J]. CIESC Journal, 2019, 70(1): 189-198.
[9] JIANG Huayi, CAI Hanghang, LIANG Aiguo, ZHANG Dingzhou, SUN Nana, CHONG Xinmin. Effect of alkali about growth characteristics of CaCO3 on galvanized iron surface [J]. CIESC Journal, 2019, 70(1): 170-178.
[10] DUAN Yaqiang, HE Xianfeng, WU Tong, ZHANG Yanping, ZHAO Zhiguo. Preparation and application of graphene lubricant additive with extreme-pressure performance [J]. CIESC Journal, 2019, 70(1): 360-369.
[11] XIE Huaqing, ZHANG Weidong, LIN Heyong, YU Qingbo. Hydrogen production via sorption-enhanced steam reforming of tar [J]. CIESC Journal, 2018, 69(S2): 466-472.
[12] CHEN Xiuying, XIE Huilin, HU Wenbin, ZHOU Xinhua, ZHOU Hongjun, SHU Xugang. Preparation and characterization of MCM-41 supported Pt-Al catalysts [J]. CIESC Journal, 2018, 69(S1): 72-79.
[13] SANG Lixia, LI Feng. Study on preparation and thermal properties of carbonates composite heat storage materials [J]. CIESC Journal, 2018, 69(S1): 129-135.
[14] GENG Lili, YANG Kaixu, ZHANG Nuowei, CHEN Binghui. Synergetic effect of Ru and Cu on catalytic wet oxidation of ammonia-wastewater [J]. CIESC Journal, 2018, 69(9): 3869-3878.
[15] CUI Jiandong, CUI Zhaohui, SU Zhiguo, ZHENG Chunyang, MA Guanghui, ZHANG Songping. Bioactive coating prepared by bio-3D printing of castor oil-based waterborne polyurethane mixed with carbonic anhydrase [J]. CIESC Journal, 2018, 69(8): 3577-3584.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!