CIESC Journal ›› 2018, Vol. 69 ›› Issue (8): 3724-3731.doi: 10.11949/j.issn.0438-1157.20180194

Previous Articles     Next Articles

Preparation of ZIF-8 membranes on ZnO modified stainless steel nets

LI Jia, GU Jinghua, YIN Wenjie, LI Zeyao   

  1. School of Materials Science and Engineering, Beihang University, Beijing 100191, China
  • Received:2018-02-11 Revised:2018-04-03 Online:2018-08-05 Published:2018-04-24
  • Supported by:

    supported by the National Natural Science Foundation of China(51178017).

Abstract:

ZIF-8 is one of the most perspective membrane materials for gas separation due to its regular pore size of 0.34 nm. Stainless steel nets (SSN) have the advantages of low price, easy cutting, and thin thickness as membrane substrates. In this work, ZnO buffering layer was synthesized on SSN substrate by hydrothermal method. ZIF-8 membranes were prepared on the ZnO modified SSN (ZnO/SSN) supports. ZnO/SSN supported ZIF-8 membranes were characterized by X ray diffraction (XRD) and scanning electron microscopy (SEM). The gas separation property of prepared ZIF-8 membranes was carried out. It is indicated that phase-pure and defect-free ZIF-8 membrane can be obtained on the ZnO/SSN substrate without additional activation step of ZnO layer. The ideal separation factors of H2/CO2, H2/N2 and H2/CH4 were 7.3, 9.2 and 12.4 at room temperature. The membrane demonstrates a good stability of permeability at 150℃.

Key words: ZIF-8 membrane, stainless steel net substrate, ZnO buffering layer, gas separation, hydrogen permselectivity

CLC Number: 

  • O614

[1] LI H, EDDAOUDI M, O'KEEFFE M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature, 1999, 402(6759):276-279.
[2] SEO J S, WHANG D, LEE H, et al. A homochiral metal-organic porous material for enantioselective separation and catalysis[J]. Nature, 2000, 404(6781):982-986.
[3] MURRAY L J, DINCA M, LONG J R. Hydrogen storage in metal-organic frameworks[J]. Chemical Society Reviews, 2009, 38(5):1294-1314.
[4] YAGHI O M, O'KEEFFE M, OCKWIG N W, et al. Reticular synthesis and the design of new materials[J]. Nature, 2003, 423(6941):705-714.
[5] LI J R, KUPPLER R J, ZHOU H C. Selective gas adsorption and separation in metal-organic frameworks[J]. Chemical Society Reviews, 2009, 38(5):1477-1504.
[6] PARK K S, NI Z, COTE A P, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks[J]. Proceedings of the National Academy of Sciences, 2006, 103(27):10186-10191.
[7] PHAN A, DOONAN C J, URIBE-ROMO F J, et al. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks[J]. Acc. Chem. Res., 2010, 43(1):58-67.
[8] YAO J, WANG H. Zeolitic imidazolate framework composite membranes and thin films:synthesis and applications[J]. Chemical Society Reviews, 2014, 43(13):4470-4493.
[9] HARA N, YOSHIMUNE M, NEGISHI H, et al. Diffusive separation of propylene/propane with ZIF-8 membranes[J]. Journal of Membrane Science, 2014, 450(15):215-223.
[10] HUANG K, DONG Z, LI Q, et al. Growth of a ZIF-8 membrane on the inner-surface of a ceramic hollow fiber via cycling precursors[J]. Chemical Communications, 2013, 49(87):10326-10328.
[11] KWON H T, JEONG H K. Improving propylene/propane separation performance of zeolitic-imidazolate framework ZIF-8 Membranes[J]. Chemical Engineering Science, 2015, 124(3):20-26.
[12] KWON H T, JEONG H K. Highly propylene-selective supported zeolite-imidazolate framework (ZIF-8) membranes synthesized by rapid microwave-assisted seeding and secondary growth[J]. Chemical Communications, 2013, 49(37):3854-3856.
[13] KWON H T, JEONG H K. In situ synthesis of thin zeolitic-imidazolate framework ZIF-8 membranes exhibiting exceptionally high propylene/propane separation[J]. Journal of the American Chemical Society, 2013, 135(29):10763-10768.
[14] LI L, YAO J, CHEN R, et al. Infiltration of precursors into a porous alumina support for ZIF-8 membrane synthesis[J]. Microporous and Mesoporous Materials, 2013, 168(1):15-18.
[15] PAN Y, LAI Z. Sharp separation of C2/C3 hydrocarbon mixtures by zeolitic imidazolate framework-8(ZIF-8) membranes synthesized in aqueous solutions[J]. Chemical Communications, 2011, 47(37):10275-10277.
[16] PAN Y, LI T, LESTARI G, et al. Effective separation of propylene/propane binary mixtures by ZIF-8 membranes[J]. Journal of membrane science, 2012, 390(15):93-98.
[17] XU G, YAO J, WANG K, et al. Preparation of ZIF-8 membranes supported on ceramic hollow fibers from a concentrated synthesis gel[J]. Journal of Membrane Science, 2011, 385(1):187-193.
[18] ZHU Y, LIU Q, CARO J, et al. Highly hydrogen-permselective zeolitic imidazolate framework ZIF-8 membranes prepared on coarse and macroporous tubes through repeated synthesis[J]. Separation and Purification Technology, 2015, 146(26):68-74.
[19] VENNA S R, CARREON M A. Highly permeable zeolite imidazolate framework-8 membranes for CO2/CH4 separation[J]. Journal of the American Chemical Society, 2009, 132(1):76-78.
[20] JANG E, KIM E, KIM H, et al. Formation of ZIF-8 membranes inside porous supports for improving both their H2/CO2 separation performance and thermal/mechanical stability[J]. Journal of Membrane Science, 2017, 540(15):430-439.
[21] ZHANG H, JAMES J, ZHAO M, et al. Improving hydrostability of ZIF-8 membranes via surface ligand exchange[J]. Journal of Membrane Science, 2017, 532(15):1-8.
[22] KONG L, ZHANG X, LIU H, et al. Synthesis of a highly stable ZIF-8 membrane on a macroporous ceramic tube by manual-rubbing ZnO deposition as a multifunctional layer[J]. Journal of Membrane Science, 2015, 490(15):354-363.
[23] ZHANG X, LIU Y, LI S, et al. New membrane architecture with high performance:ZIF-8 membrane supported on vertically aligned ZnO nanorods for gas permeation and separation[J]. Chemistry of Materials, 2014, 26(5):1975-1981.
[24] HUANG A, LIU Q, WANG N, et al. Highly hydrogen permselective ZIF-8 membranes supported on polydopamine functionalized macroporous stainless-steel-nets[J]. Journal of Materials Chemistry A, 2014, 2(22):8246-8251.
[25] RUAN X, ZHANG X, LIAO X, et al. Enhancing mechanical stability and uniformity of 2-D continuous ZIF-8 membranes by Zn (Ⅱ)-doped polydopamine modification[J]. Journal of Membrane Science, 2017, 541(1):101-107.
[26] LI W, MENG Q, LI X, et al. Non-activation ZnO array as a buffering layer to fabricate strongly adhesive metal-organic framework/PVDF hollow fiber membranes[J]. Chemical Communications, 2014, 50(68):9711-9713.
[27] LIU Q, WANG N, CARO J, et al. Bio-inspired polydopamine:a versatile and powerful platform for covalent synthesis of molecular sieve membranes[J]. Journal of the American Chemical Society, 2013, 135(47):17679-17682.
[28] ZHANG X, LIU Y, KONG L, et al. A simple and scalable method for preparing low-defect ZIF-8 tubular membranes[J]. Journal of Materials Chemistry A, 2013, 1(36):10635-10638.
[29] ZHAN W, KUANG Q, ZHOU J, et al. Semiconductor@metal-organic framework core-shell heterostructures:a case of ZnO@ZIF-8 nanorods with selective photoelectrochemical response[J]. Journal of the American Chemical Society, 2013, 135(5):1926-1933.
[30] FAIREN-JIMENEZ D, MOGGACH S A, WHARMBY M T, et al. Opening the gate:framework flexibility in ZIF-8 explored by experiments and simulations[J]. Journal of the American Chemical Society, 2011, 133(23):8900-8902.

[1] ZHANG Shengyi, LI Lin, WANG Chunlei, ZHENG Tianfu, SUN Yaming, WANG Tonghua. Preparation of free-standing graphene carbon membrane for gas separation [J]. CIESC Journal, 2016, 67(10): 4225-4230.
[2] BAI Lu, ZHANG Xiangping, DENG Jing, LI Mengdie. Ionic liquids based membranes for CO2 separation: a review [J]. CIESC Journal, 2016, 67(1): 248-257.
[3] CAO Lingdi, ZENG Shaojuan, ZHANG Xiangping, ZHANG Suojiang. Progress on hydrogen sulfide removal using ionic liquids [J]. CIESC Journal, 2015, 66(S1): 1-9.
[4] NIE Fei, HE Gaohong, ZHAO Wei, JU Jia, LI Hao. Preparation and gas separation performance of hydrophobic SiO2/PTFPMS hybrid composite membrane [J]. CIESC Journal, 2014, 65(8): 3019-3025.
[5] ZHAO Zhenxia, XU Feng, LI Zhong. Gas separation properties of zeolitic imidazolate framework-8 membranes prepared by secondary synthesis [J]. CIESC Journal, 2014, 65(5): 1673-1679.
[6] ZHANG Chunfang,LAI Aonan,BAI Yunxiang,GU Jin,SUN Yuping. Preparation of EVA38/Tween20 gel gas separation membranes and their performances [J]. Chemical Industry and Engineering Progree, 2013, 32(05): 996-1000.
[7] YANG Hongjun, FAN Shuanshi, LANG Xuemei, WANG Yanhong, NIE Jianghua. Economic Comparison of Three Gas Separation Technologies for CO2 Capture from Power Plant Flue Gas [J]. , 2011, 19(4): 615-620.
[8] QI Hong. Preparation of Composite Microporous Silica Membranes Using TEOS and 1,2-Bis(triethoxysilyl)ethane as Precursors for Gas Separation [J]. , 2011, 19(3): 404-409.
[9] QING Geletu,LIU Ping,GUO Weinan,WANG Baoguo. Application of ionic liquids in membrane separation processes [J]. , 2010, 29(11): 2019-.
[10] ZHANG Meng,ZHANG Shanghui,CHAI Yongfeng,REN Changyu. Simulation and analysis of natural gas separation [J]. , 2010, 29(10): 1845-.
[11] MA Qingfen, HU Dapeng, HE Gaohong, HU Shijun, LIU Wenwei, XU Qiaolian, WANG Yuxin. Performance of Inner-core Supersonic Gas Separation Device with Droplet Enlargement Method [J]. , 2009, 17(6): 925-933.
[12] YAO Weijing,GU Min,XIAN Xuefu,LIN Wensheng. Progress of preparation of coal-based carbon molecular sieves for gas separation by pressure swing adsorption [J]. , 2009, 28(4): 549-.
[13] JIANG Yingying, WU Youting, WANG Wenting, LI Lei, ZHOU Zheng, ZHANG Zhibing. Permeability and Selectivity of Sulfur Dioxide and Carbon Dioxide in Supported Ionic Liquid Membranes [J]. , 2009, 17(4): 594-601.
[14] TENG Yiwan,WU Fawen ,WANG Hui,LI Lei,ZHANG Zhibing. Research progress of polymeric material of gas separation membrane for gas pair CO2/CH4 [J]. , 2007, 26(8): 1075-.
[15] CHENG Guilin,CHENG Lihua,ZHANG Lin,CHEN Huanlin. Research progress of membrane contactor for gas separation [J]. , 2006, 25(8): 901-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!