CIESC Journal ›› 2018, Vol. 69 ›› Issue (9): 3869-3878.doi: 10.11949/j.issn.0438-1157.20180186

Previous Articles     Next Articles

Synergetic effect of Ru and Cu on catalytic wet oxidation of ammonia-wastewater

GENG Lili1, YANG Kaixu2, ZHANG Nuowei2, CHEN Binghui1,2   

  1. 1. Department of Chemistry and Applied Chemistry, Changji University, Changji 831100, Xinjiang, China;
    2. College of Chemistry and Chemical Engineering, National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters, Xiamen University, Xiamen 361005, Fujian, China
  • Received:2018-02-09 Revised:2018-06-18
  • Supported by:

    supported by the Educational Commission of Xinjiang (XJEDU2016S083) and the Natural Science Foundation of Fujian Province (2015J05031).

Abstract:

RuCu/TiO2 bimetallic catalysts which were prepared via chemical reduction methods and the synergetic effect between Ru and Cu in the detoxification of ammonia-wastewater to nitrogen via catalytic wet air oxidation (CWAO) were investigated. The results showed that the addition of Cu in Ru/TiO2 can effectively improve the selectivity of N2, while the presence of Ru in Cu/TiO2can greatly enhance the catalytic activity of the catalyst. The catalyst (1Ru2Cu/TiO2) with 1% and 2% loading of Ru and Cu has the best catalytic performance among the prepared catalysts. With the reaction conditions of 0.5 MPa,150℃,[NH3]0=1000 mg·L-1,pH=12 and the application to the simulated wastewater was about 33 L·(kg cat)-1·h-1, 1Ru2Cu/TiO2 achieved 87.7% ammonia conversion and 85.9% N2 selectivity. The characterization results demonstrated that the synergetic effect of Ru and Cu played a key role in the catalytic of the ammonia to nitrogen, mainly reflects in the following:the strong interaction between Ru and Cu results in good anti-leaching of 1Ru2Cu/TiO2 catalyst, leading to excellent stability for the catalyst. The electron transfer between Ru and Cu makes 1Ru2Cu/TiO2 has a moderate oxygen affinity, which has effectively enhanced the catalytic activity of the catalyst.

Key words: RuCu/TiO2, catalytic wet air oxidation, ammonia-wastewater, synergetic effects, nanomaterials, catalysis, degradation

CLC Number: 

  • TQ032

[1] 王泽斌, 马云, 王强. 含氮废水生物处理技术研究现状及发展趋势[J]. 环境科学与管理, 2011, 9:108-112. WANG Z B, MA Y, WANG Q. Advance and trend of biological nitrogen removal technologies in wastewater treatment[J]. Environmental Science and Management, 2011, 9:108-112.
[2] LUCK F. Wet air oxidation:past, present and future[J]. Catalysis Today, 1999, 53(1):81-91.
[3] LEVEC J, PINTAR A. Catalytic wet-air oxidation processes:a review[J]. Catalysis Today, 2007, 124(3/4):172-184.
[4] BHARGAVA S K, TARDIO J, PRASAD J, et al. Wet oxidation and catalytic wet oxidation[J]. Industrial & Engineering Chemistry Research, 2006, 45(4):1221-1258.
[5] IMAMURA S. Catalytic and noncatalytic wet oxidation[J]. Industrial & Engineering Chemistry Research, 1999, 38(5):1743-1753.
[6] HUNG C M, LOU J C, LIN C H. Removal of ammonia solutions used in catalytic wet oxidation processes[J]. Chemosphere, 2003, 52(6):989-995.
[7] WANG Y, SUN W, WEI H, et al. Extended study of ammonia conversion to N2using a Ru/0.2TiZrO4 catalyst via catalytic wet air oxidation[J]. Catal. Sci. Technol., 2016, 6:6144-6151.
[8] CAPODAGLIO A G, HLAVINEK P, RABONI M. Physico-chemical technologies for nitrogen removal from wastewaters:a review[J]. Revista Ambiente & Agua, 2015, 10:481-498.
[9] QIN J, AIKA K. Catalytic wet air oxidation of ammonia over alumina supported metals[J]. Applied Catalysis B:Environmental, 1998, 16:261-268.
[10] BARBIER J, OLIVIERO L, RENARD B, et al. Catalytic wet air oxidation of ammonia over M/CeO2 catalysts in the treatment of nitrogen-containing pollutants[J]. Catalysis Today, 2002, 75:29-34.
[11] HIDEKI T, QIN J, AIKA K. Hydrogen-treated active carbon supported palladium catalysts for wet air oxidation of ammonia[J]. Chemistry Letters, 1999, 28(5):377-378.
[12] 付迎春. 催化湿式氧化法处理氨氮废水的研究[D]. 南京:南京工业大学, 2004. FU Y C. Study on treatment of ammonia wastewater by catalytic wet air oxidation process[D]. Nanjing:Nanjing University of Technology, 2004.
[13] SUTASINEE K N, INAZU K, KOBAYASHI T, et al. Selective wet-air oxidation of diluted aqueous ammonia solutions over supported Ni catalysts[J]. Water Research, 2004, 38:778-782.
[14] IMAMURA S, DOI A, ISHIDA S. Wet oxidation of ammonia catalyzed by cerium-based composite oxides[J]. Industrial & Engineering Chemistry Product Research and Development, 1985, 24(1):75-80.
[15] INOUE K, NAKAYAMA D, WATANABE Y. Oxidation of dissolved ammonia using various metal-oxide catalysts[J]. Kagaku Kogaku Ronbunshu, 1986, 12(2):222-223.
[16] HUNG C M. Catalytic wet oxidation of ammonia solution:activity of the Cu-La-Ce/cordierite composite catalyst[J]. Environmental Engineering Science, 2009, 26(2):351-358.
[17] UKROPEC R, KUSTER B F M, SCHOUTEN J C, et al. Low temperature oxidation of ammonia to nitrogen in liquid phase[J]. Applied Catalysis B:Environmental, 1999, 23:45-57.
[18] NEUROCK M, VAN SANTEN R, BIEMOLT W, et al. Atomic and molecular oxygen as chemical precursors in the oxidation of ammonia by copper[J]. Journal of the American Chemical Society, 1994, 116:6860-6872.
[19] LOUSTEAU C, BESSON M, DESCORME C. Catalytic wet air oxidation of ammonia over supported noble metals[J]. Catalysis Today, 2015, 241:80-85.
[20] FU J L, YANG K X, MA C J, et al. Bimetallic Ru-Cu as a highly active, selective and stable catalyst for catalytic wet oxidation of aqueous ammonia to nitrogen[J]. Applied Catalysis B:Environmental, 2016, 184:216-222.
[21] 王子丹, Hameed Sohaib, 张诺伟, 等. PdNi/C低温高效催化湿式氧化无害化处理氨氮废水[J]. 厦门大学学报(自然科学版), 2018, 57(1):32-37. WANG Z D, HAMEED S, ZHANG N W, et al. Efficient degrading of ammonia by catalytic wet air oxidation over PdNi/C catalyst under mild condition[J]. Journal of Xiamen University (Natural Science), 2018, 57(1):32-37.
[22] CRAVANZOLA S, CESANO F, GAZIANO F, et al. Sulfur-doped TiO2:structure and surface properties[J]. Catalysts, 2017, 7:214-225.
[23] TAN T H, SCOTT J, NG Y H, et al. Understanding plasmon and band gap photoexcitation effects on the thermal-catalytic oxidation of ethanol by TiO2-supported gold[J]. ACS Catal., 2016, 6:1870-1879.
[24] SALAZAR J B, FALCONE D D, PHAM H N, et al. Selective production of 1, 2-propanediol by hydrogenolysis of glycerol over bimetallic Ru-Cu nanoparticles supported on TiO2[J]. Applied Catalysis A:General, 2014, 482:137-144.
[25] REQUIES J, GÜEMEZ M B, IRIONDO A, et al. Biobutanol dehydrogenation to butyraldehyde over Cu, Ru and Ru-Cu supported catalysts. Noble metal addition and different support effects[J]. Catal. Lett., 2012, 142:50-59.
[26] BALARAJU M, REKHA V, DEVI B, et al. Surface and structural properties of titania-supported Ru catalysts for hydrogenolysis of glycerol[J]. Applied Catalysis A:General, 2010, 384(1/2):107-114.
[27] HAMZAH N, NORDINC N M, NADZRI A H A, et al. Enhanced activity of Ru/TiO2 catalyst using bisupport, bentonite-TiO2 for hydrogenolysis of glycerol in aqueous media[J]. Applied Catalysis A:General, 2012, 419/420:133-141.
[28] TADA S, KIKUCHI R, TAKAGAKI A, et al. Effect of metal addition to Ru/TiO2 catalyst on selective CO methanation[J]. Catalysis Today, 2014, 232:16-21.
[29] LU M H, DU H, WEI B, et al. Hydrodeoxygenation of guaiacol on Ru catalysts:Influence of TiO2-ZrO2 composite oxide supports[J]. Ind. Eng. Chem. Res., 2017, 56:12070-12079.
[30] OMOTOSO T, BOONYASUWAT S, CROSSLEY S P. Understanding the role of TiO2 crystal structure on the enhanced activity and stability of Ru/TiO2 catalysts for the conversion of lignin-derived oxygenates[J]. Green Chem., 2014, 16:645-652.
[31] FTOUNI J, MURILLO A M, GORYACHEV A E, et al. ZrO2 is preferred over TiO2 as support for the Ru-catalyzed hydrogenation of levulinic acid to γ-valerolactone[J]. ACS Catal., 2016, 6:5462-5472.
[32] DI L, WU G J, DAI W L, et al. Ru/TiO2 for the preferential oxidation of CO in H2-rich stream:effects of catalyst pre-treatments and reconstruction of Ru sites[J]. Fuel, 2015, 143:318-326.
[33] SAYAN S, SUZER S, DO U. XPS and in-situ IR investigation of Ru/SiO2 catalyst[J]. J. Mol. Struct., 1997, 410/411:111-114.
[34] NOZAWA T, MIZUKOSHI Y, YOSHIDA A, et al. Aqueous phase reforming of ethanol and acetic acid over TiO2 supported Ru catalysts[J]. Appl. Phys. B, 2014, 146:221-226.
[35] KUNDAKOVIC L, FLYTZANI-STEPHANOPOULOS M. Reduction characteristics of copper oxide in cerium and zirconium oxide systems[J]. Applied Catalysis A:General, 1998, 171:13-29.
[36] RITZKOPF I, VUKOJEVIC'S, WEIDENTHALER C, et al. Decreased CO production in methanol steam reforming over Cu/ZrO2 catalysts prepared by the microemulsion technique[J]. Applied Catalysis A:General, 2006, 302:215-223.
[37] ROSENBAUM J, VERSACE D L, ABBAD-ANDALLOUSI S, et al. Antibacterial properties of nanostructured Cu-TiO2 surfaces for dental implants[J]. Biomater. Sci., 2017, 5:455-462.
[38] YIN M, WU C K, LOU Y, et al. Copper oxide nanocrystals[J]. J. Am. Chem. Soc., 2005, 127(26):9506-9511.
[39] ZHANG H, ZHENG Z J, MA C J, et al. Tuning surface properties and catalytic performances of Pt-Ru bimetallic nanoparticles by thermal treatment[J]. ChemCatChem, 2015, 7(2):245-249.
[40] TAUSTER S J, FUNG S C, GARTEN R L. Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide[J]. J. Am. Chem. Soc., 1978, 100(1):170-175.

[1] DUAN Yunbiao, XU Cunying, WANG Xiang, LIU Hai, HUANG Mengting. Synthesis of Fe3+-doped ZnO nanostructures by antisolvent precipitation method and their visible photocatalytic activity [J]. CIESC Journal, 2019, 70(3): 1198-1207.
[2] LIANG Tianshui, WANG Zongying, GAO Kun, LI Runwan, WANG Zheng, ZHONG Wei, ZHAO Jun. Analysis of fire suppression effectiveness of ultra-fine water mist containing iron compounds additives in cup burner [J]. CIESC Journal, 2019, 70(3): 1236-1242.
[3] BAI Junren, YI Jun, LI Qian, WU Ling, CHEN Xuemei. Multi-objective optimization of QPSO for thereaction-regeneration process [J]. CIESC Journal, 2019, 70(2): 750-756.
[4] KANG Lixia, MA Chenlu, LIU Yongzhong. Operation optimization of modularized energy storage of retired batteries in hybrid power systems [J]. CIESC Journal, 2019, 70(2): 599-606.
[5] ZHU Yi, WANG Hao, CHEN Liping, GUO Zichao, HE Zhongqi, CHEN Wanghua. Calculate time to maximum rate under adiabatic condition by numerical calculation method [J]. CIESC Journal, 2019, 70(1): 379-387.
[6] CHEN Chen, WANG Ying, LIU Hong, CHEN Yan, YAO Mingdong, XIAO Wenhai. Exploring the key structural properties affecting the function of multi-step phytoene dehydrogenase CrtI [J]. CIESC Journal, 2019, 70(1): 189-198.
[7] LIU Hui'e, HUANG Yangfan, MA Yanbing, CHEN Shuang. Saturated adsorption capacities of graphene aerogels on organics [J]. CIESC Journal, 2019, 70(1): 280-289.
[8] XIE Huaqing, ZHANG Weidong, LIN Heyong, YU Qingbo. Hydrogen production via sorption-enhanced steam reforming of tar [J]. CIESC Journal, 2018, 69(S2): 466-472.
[9] CHEN Xiuying, XIE Huilin, HU Wenbin, ZHOU Xinhua, ZHOU Hongjun, SHU Xugang. Preparation and characterization of MCM-41 supported Pt-Al catalysts [J]. CIESC Journal, 2018, 69(S1): 72-79.
[10] JIA Shangning, CHANG Juanjuan, LI Ningbo, QIAO Jie. Synthesis of magnetic nanoparticles with core-shell structure and its drug loading properties [J]. CIESC Journal, 2018, 69(S1): 170-175.
[11] NIE Shidong, LI Jiangtao, ZHANG Zhiying, LIU Yun, LIU Chunyan. Synthesis and properties of hierarchical structure silver micro-nanocrystals [J]. CIESC Journal, 2018, 69(9): 4090-4096.
[12] CUI Lingna, LIU Yuejun. Synthesis process optimization and degradation properties of PLA/PBAu block copolymer [J]. CIESC Journal, 2018, 69(9): 4075-4082.
[13] HE Meizhi, YANG Luwei, ZHANG Zhentao, YANG Junling. Preparation and properties of nanomaterials/MA hybrid phase change thermal energy storage materials [J]. CIESC Journal, 2018, 69(9): 4097-4105.
[14] CUI Jiandong, CUI Zhaohui, SU Zhiguo, ZHENG Chunyang, MA Guanghui, ZHANG Songping. Bioactive coating prepared by bio-3D printing of castor oil-based waterborne polyurethane mixed with carbonic anhydrase [J]. CIESC Journal, 2018, 69(8): 3577-3584.
[15] YIN Yue, YUAN Linjiang, NIU Yuwei. Relationship between liquid change in dual chambers and performance of electricity production in DCMFC [J]. CIESC Journal, 2018, 69(8): 3605-3610.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!