CIESC Journal ›› 2018, Vol. 69 ›› Issue (S1): 161-169.doi: 10.11949/j.issn.0438-1157.20180175

Previous Articles     Next Articles

Kinetic study on thermal decomposition of GFRP under γ irradiation

ZHENG Lifang1, WANG Zhaozhong1, XIE Yajie2, YUE Lina3, WANG Li1   

  1. 1 School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China;
    2 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China;
    3 School of Environmental Engineering, North China Institute of Science and Technology, Beijing 101601, China
  • Received:2018-02-06 Revised:2018-02-12 Online:2018-09-30 Published:2018-07-16
  • Supported by:

    supported by the National Natural Science Foundation of China (51605025), the Fundamental Research Funds for the Central Universities (FRF-GF-17-B19), the Foundation of Major Program of National Key Research and the Development Program of China (2016YFC0802905).

Abstract:

Glass fiber reinforced plastic (GFRP) is used as support material for high energy physics and nuclear physics experiments due to its excellent thermal insulation and mechanical performance. High-energy physics and nuclear physics experiments produce large amounts of γ and neutron irradiation to the support material. In order to ensure the stability of GFRP under γ-irradiation conditions, the kinetic model of pyrolysis needs to be establish to calculate the activation energy under different irradiation doses. The obtained results show that the pyrolysis process of GFRP in a nitrogen atmosphere can be divided into three stages, the main mass loss stage occurs at 200-470℃. With the increase of radiation dose, the mass loss rate of GFRP increased. After 20, 100 and 200 kGy γ irradiation, the mass loss rate of GFRP increased from 31.1% to 32.7%, 35.5% and 37.5%, respectively, by 2%, 3.9% and 4.4%. With the heating rate increased the mass loss rate increased significantly. After 200 kGy γ irradiation, the average activation energy of GFRP calculated by Friedman method was increased from 96.1 kJ·mol-1 to 116.6 kJ·mol-1, which increased by 21.3%. The average activation energy of GFRP calculated by FWO method was increased from 107.6 kJ·mol-1 to 125.4 kJ·mol-1, which increased by 16.5%. Microstructure analysis by SEM found that the binding degree of the glass fiber and the epoxy declines after γ irradiation, differential scanning calorimetry indicates that the curing reaction occur of epoxy in the irradiation process.

Key words: GFRP, pyrolysis, activation energy, &gamma, irradiation, composites, thermodynamics

CLC Number: 

  • TB332

[1] SHAMSUDDOHA M, DJUKIC L P, ISLAM M M, et al. Mechanical and thermal properties of glass fiber-vinyl ester resin composite for pipeline repair exposed to hot-wet conditioning[J]. Journal of Composite Materials, 2016, 51(11):1605-1617.
[2] NARESH K, SHANKAR K, RAO B S, et al. Effect of high strain rate on glass/carbon/hybrid fiber reinforced epoxy laminated composites[J]. Composites Part B:Engineering, 2016, 100:125-135.
[3] XU D S, LIU H B, LUO W L. Evaluation of interface shear behavior of GFRP soil nails with a strain-transfer model and distributed fiber-optic sensors[J]. Computers & Geotechnics, 2017, 95:180-190.
[4] 薛伟辰, 王伟, 付凯. 碱环境下不同应力水平GFRP筋抗拉性能试验[J]. 复合材料学报, 2013, 30(6):67-75. XUE W C, WANG W, FU K. Experimental study on tensile properties of GFRP rebars under different stress levels as exposed to alkaline solution[J]. Acta Materiae Compositae Sinica, 2013, 30(6):67-75.
[5] KASHI A, RAMEZANIANPOUR A A, MOODI F. Effect of cement based coatings on durability enhancement of GFRP-wrapped columns in marine environments[J]. Construction & Building Materials, 2017, 137:307-316.
[6] GARCIA-ESPINEL J D, CASTRO-FRESNO D, GAYO P P, et al. Effects of sea water environment on glass fiber reinforced plastic materials used for marine civil engineering constructions[J]. Materials & Design, 2015, 66:46-50.
[7] 李彦春. 国内外玻璃钢/复合材料在汽车上应用现状及发展趋势[J]. 热固性树脂, 2001, 16(6):14-17. LI Y C. Application situation of FRP and composite for automobile and its development trend at home and abroad[J]. Thermoseting Resin, 2001, 16(6):14-17.
[8] 严世成, 梁克瑞. 玻璃钢/复合材料的发展、应用与展望[J]. 广东化工, 2014, 41(24):72-73. YAN S C, LIANG K R. Development, application and prospect of FRP/composite[J]. Guangdong Chemical Industry, 2014, 41(24):72-73.
[9] ZHANG C. BEPC Ⅱ:construction and commissioning[J]. Chinese Physics C, 2009, 33(S2):60-64.
[10] PROKOPEC R, HUMER K, MAIX R K, et al. Mechanical strength of various cyanate ester/epoxy insulation systems after fast neutron irradiation to the ITER design fluence and beyond[J]. Fusion Engineering & Design, 2007, 82(5):1508-1512.
[11] ZHENG L, WANG L, JI Q, et al. Temperature fields across the BES Ⅲ beam pipe[J]. Nuclear Instruments & Methods in Physics Research, 2014, 739(2):21-25.
[12] MITCHELL N, DEVRED A, LIBEYRE P, et al. The ITER magnets:design and construction status[J]. IEEE Transactions on Applied Superconductivity, 2012, 22(3):4200809.
[13] LI J, WU Z, HUANG C, et al. Gamma irradiation effects on cyanate ester/epoxy insulation materials for superconducting magnets[J]. Fusion Engineering & Design, 2014, 89(12):3112-3116.
[14] 张艳文, 王绪, 唐美雄, 等. 核材料辐照损伤协同效应的研究[J]. 原子核物理评论, 2015, 32(s1):69-73. ZHANG Y W, WANG X, TANG M X, et al. Synergy effect study of radiation damage in nuclear materials[J]. Nuclear Physics Review, 2015, 32(s1):69-73.
[15] WANG Q, MA C, YU Y, et al. Irradiation effect on the interface of the composites used as the insulation materials in the nuclear fusion reactor[J]. Physics Procedia, 2014, 58(3):236-239.
[16] 张颖, 王志, 徐艳英, 等. 高强玻璃纤维复合材料热分解动力学研究[J]. 消防科学与技术, 2017, 36(2):149-152. ZHANG Y, WANG Z, XU Y Y, et al. Study on pyrolysis kinetics of high-strength glass fiber/epoxy resin composites[J]. Fire Science and Technology, 2017, 36(2):149-152.
[17] 陈敏孙, 江厚满, 刘泽金. 玻璃纤维/环氧树脂复合材料热分解动力学参数的确定[J]. 强激光与粒子束, 2010, 22(9):1969-1972. CHEN M S, JIANG H M, LIU Z J. Determination of thermal decomposition kinetic parameters of glass-fiber/epoxy composite[J]. High Power Laser and Particle Beams, 2010, 22(9):1969-1972.
[18] 李星, 高俊刚, 孙贝贝. 多聚甲醛法硼酚醛树脂的热降解动力学[J]. 热固性树脂, 2010, 25(6):10-13. LI X, GAO J G, SUN B B. Thermal degradation kinetics of boron-containing phenol formaldehyde resin by paraformaldehyde method[J]. Thermosetting Resin, 2010, 25(6):10-13.
[19] DOYLE C D. Kinetic analysis of thermogravimetric data[J]. Journal of Applied Polymer Science, 1962, 6(19):1845-1864.
[20] FRIEDMAN H L. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic[J]. Journal of Polymer Science Part C, 1964, 6(1):183-195.
[21] ZHENG L F, QIAO Z M, XU X X, et al. Effects of γ irradiation on the compression and inter-laminar shear properties of G10 for the BESⅢ beam pipe supporting flange[J]. Fusion Engineering & Design, 2017, 117:24-29.
[22] YANG X T, TANG L, GUO Y Q, et al. Improvement of thermal conductivities for PPS dielectric nanocomposites via incorporating NH2-POSS functionalized nBN fillers[J]. Composites Part A Applied Science & Manufacturing, 2017, 101:237-242.
[23] 殷锐, 湛利华, 李树健. 基于变活化能模型的T800/环氧树脂预浸料固化反应动力学研究[J]. 玻璃钢/复合材料, 2017, 4:11-16. YIN R, ZHAN L H, LI S J. Study on the cure kinetics of T800/epoxy resin prepreg based on activation energy variable model[J]. Fiber Reinforced Plastics/Composites, 2017, 4:11-16.
[24] 王军, 刘文彬, 王超. 环氧树脂胶黏剂在石墨粘接接头的热分解动力学[J]. 化工学报, 2006, 57(6):1496-1499. WANG J, LIU W B, WANG C. Thermal decomposition dynamics of epoxy adhesive in adhesive/graphite joints[J]. Journal of Chemical Industry and Engineering (China), 2006, 57(6):1496-1499.
[25] 江国栋, 魏利平, 滕海鹏,等. 基于热重法的准东煤等转化率热分解动力学模型[J]. 化工学报, 2017, 68(4):1415-1422. JIANG G D, WEI L P, TENG H P, et al. A kinetic model based on TGA data for pyrolysis of Zhundong coal[J]. CIESC Journal, 2017, 68(4):1415-1422.
[26] 刘玉卿, 海热提. 防溴型环氧树脂电路板热分解[J]. 化工学报, 2011, 62(3):823-828. LIU Y Q, HAI R T. Pyrolysis of printed circuit boards made with anti-Br type epoxy resin[J]. CIESC Journal, 2011, 62(3):823-828.
[27] 孟祥丽, 王丹丹, 王鹏. 聚苯并双唑酰亚胺的热分解动力学研究[J]. 高分子学报, 2013, 2:154-159. MENG X L, WANG D D, WANG P. Thermal degradation kinetics of poly(benzobisoxazole imide)[J]. Acta Polymerica Sinica, 2013, 2:154-159.
[28] 田秀娟, 王忠卫, 于青,等. 含磷阻燃剂阻燃环氧树脂热降解动力学[J]. 化工学报, 2014, 65(12):5082-5089. TIAN X J, WANG Z W, YU Q, et al. Kinetics of thermal decomposition of epoxy resins modified with phosphorus-containing flame retardant[J]. CIESC Journal, 2014, 65(12):5082-5089.
[29] 曹红亮, 李国强, 黄思涵,等. 基于等转化率法的牛粪热分解动力学特性研究[J]. 太阳能学报, 2015, 36(7):1773-1778. CAO H L, LI G Q, HUANG S H, et al. Research on kinetic characteristics of cattle manure pyrolysis using isoconversional methods[J]. Acta Energiae Solaris Sinica, 2015, 36(7):1773-1778.
[30] 刘叶, 张锋, 李宗孝. 乌头碱的热分解及半衰期研究[J]. 化工学报, 2017, 68(12):4500-4507. LIU Y, ZHANG F, LI Z X. Study on pyrolysis and half-life of aconitine[J]. CIESC Journal, 2017, 68(12):4500-4507.
[31] WU B, WANG Y Z, WANG X L, et al. Kinetics of thermal oxidative degradation of phosphorus-containing flame retardant copolyesters[J]. Polymer Degradation and Stability, 2002, 76:401-409.
[32] WANG Q F, SHI W F. Kinetics study of thermal decomposition of epoxy resins containing flame retardant components[J]. Polymer Degradation and Stability, 2006, 91:1747-1754.

[1] HAN Lu, MA Fangwu, CHEN Shixian, PU Yongfeng, SHEN Liang. Mechanical properties of basalt fiber-reinforced polylactide matrix and aging resistance properties [J]. CIESC Journal, 2019, 70(3): 1171-1178.
[2] ZHANG Yating, ZHANG Kaibo, JIA Kaili, HE Xinfu, LIU Guoyang, WANG Wei, ZHANG Yongling, QIU Jieshan. Preparation and lithium storage properties of flexible self-standing PDDA-Si/G nanocomposite film [J]. CIESC Journal, 2019, 70(3): 1144-1151.
[3] WANG Zhenyou, LIU Hui'e, ZHU Jiameng, CHEN Shuang, YU Anran. Preparation of polyvinyl alcohol-graphene aerogel by emulsion method and its adsorption on pure organics [J]. CIESC Journal, 2019, 70(3): 1152-1162.
[4] WANG Fayang, DU Jun, DAI Lu, WU Haichao, WANG Youyong, SONG Yongming. Effect of divinylbenzene-assisted maleic anhydride grafted poly(lactic acid) on properties of microcrystalline cellulose/poly(lactic acid) composites [J]. CIESC Journal, 2019, 70(1): 327-335.
[5] ZHOU Sunxi, ZHANG Xuelai, LIU Sheng, CHEN Qiyang, XU Xiaofeng, WANG Yinghui. Preparation and properties of decyl alcohol-palmitic acid/expanded graphite low temperature composite phase change material [J]. CIESC Journal, 2019, 70(1): 290-297.
[6] ZHU Yi, WANG Hao, CHEN Liping, GUO Zichao, HE Zhongqi, CHEN Wanghua. Calculate time to maximum rate under adiabatic condition by numerical calculation method [J]. CIESC Journal, 2019, 70(1): 379-387.
[7] XIANG Wenjun, ZHU Zhaoju, LIU Dan, ZHOU Lüshan. Molecular dynamics simulations core-shell self-assembly from amphiphilic polymer and hydrophobic nanoparticle [J]. CIESC Journal, 2019, 70(1): 345-354.
[8] LIANG Xingyu, LIU Hongxin, CAO Xiang, SHAO Liangliang, ZHANG Chunlu. Performance analysis of a novel compressor-ejector cycle with two-stage evaporation [J]. CIESC Journal, 2018, 69(S2): 26-30.
[9] LI Ran, LIU Jingjun, LI Yuxing, YIN Yue, ZHU Jianlu, CHEN Wenjie, WANG Wuchang. Selection of state equations for evaporation calculation in LNG receiving terminal [J]. CIESC Journal, 2018, 69(S2): 31-37.
[10] LIU Zhan, FENG Yuyang, LEI Gang, LI Yanzhong. Coupled thermal dynamic performance in cryogenic liquid oxygen tank under slosh excitation [J]. CIESC Journal, 2018, 69(S2): 61-67.
[11] ZOU Huiming, LI Xuan, TANG Mingsheng, SHAO Shuangquan, TIAN Changqing. Experimental investigation on refrigeration performance of R290 linear compressor [J]. CIESC Journal, 2018, 69(S2): 480-484.
[12] WANG Lin, HE Hui, WANG Zhanwei, SONG Zun, LIANG Kunfeng, MA Aihua. Applicability of heat pump air-conditioning system with groundwater preheating fresh air [J]. CIESC Journal, 2018, 69(S2): 485-491.
[13] XU Jiaxing, CHAO Jingwei, LI Tingxian, WANG Ruzhu. Preparation and characterization of expanded graphite/metal organic frameworks composite sorbent [J]. CIESC Journal, 2018, 69(S2): 492-499.
[14] SUN Xing, XU Keke, MENG Hua. Supercritical-pressure heat transfer of n-decane with fuel pyrolysis in helical tube [J]. CIESC Journal, 2018, 69(S1): 20-25.
[15] ZHANG Liang, SHI Zhongke. Experimental exploration of passive energy storage device with phase change materials for vehicle [J]. CIESC Journal, 2018, 69(S1): 176-181.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!