CIESC Journal ›› 2018, Vol. 69 ›› Issue (8): 3460-3468.doi: 10.11949/j.issn.0438-1157.20180134

Previous Articles     Next Articles

Falling film crystallization kinetics of paraxylene

WANG Rui1, XU Yanxia1, SONG Xingfu1, XU Zhigang2, YU Jianguo1   

  1. 1 National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, Shanghai 200237, China;
    2 Changzhou Ruihua Chemical Eng. & Tech. Co., Ltd., Changzhou 213000, Jiangsu, China
  • Received:2018-01-30 Revised:2018-05-07 Online:2018-08-05 Published:2018-06-01

Abstract:

Falling film crystallization is an important production method of paraxylene in industry. The falling film crystallization kinetics of paraxylene was studied based on the fractal and porous media theory. The experimental conditions were optimized by kinetic modeling. The crystallization conditions were feeding speed of 60 ml·min-1, crystallization temperature of -15℃ and raw material precooling temperature of 25℃, and sweating conditions were heating rate 1℃·min-1, and sweating end temperature of 5℃. Under the optimized experimental conditions, the crystal growth rate equation and the liquid entrapment rate equation were built by measuring the amount of paraxylene crystallization and liquid entrapment, and the correlation coefficients were 0.967 and 0.977. The results show that the liquid entrapment rate increases faster, and the volume fraction of the liquid entrapment in the crystal layer increases with the augment of supersaturation, resulting in the increase of porosity in the crystal layer. The establishment of crystal growth rate equation and liquid entrapment rate equation has important significance for the control of the crystal layer growth by adjusting the liquid film supersaturation in the industrial paraxylene production by falling film crystallization.

Key words: paraxylene, crystallization, kinetics, optimization, supersaturation, porosity

CLC Number: 

  • TQ026.7

[1] LIN Z, NIKOLAKIS V, IERAPETRITOU M G. Life cycle assessment of biobased p-xylene production[J]. Industrial & Engineering Chemistry Research, 2015, 54(8):2366-2378.
[2] 陈亮, 肖剑, 谢在库, 等. 对二甲苯悬浮熔融结晶动力学[J]. 化工学报, 2009, 60(11):2787-2791. CHEN L, XIAO J, XIE Z K, et al. Suspension melt crystallization kinetics of p-xylene[J]. CIESC Journal, 2009, 60(11):2787-2791.
[3] 宋书恒. 对二甲苯熔融结晶过程实验及数学模型研究[D]. 湘潭:湘潭大学, 2016. SONG S H. The crystallization purification process and mathematical model of paraxylene[D]. Xiangtan:Xiangtan University, 2016.
[4] 沈澍, 李士雨. 熔融结晶法分离提纯对二甲苯[J]. 化工进展, 2017, 36(5):1605-1611. SHEN S, LI S Y. Purification of p-xylene by melt crystallization[J]. Chemical Industry and Engineering Progress, 2017, 36(5):1605-1611.
[5] BLANKS R F. In-line measurement of crystallization kinetics for paraxylene recovery by continuous melt crystallization slurry process industrial crystallization[J]. Symposium on Industrial Crystallization, 2001, 2:5-063-5-068.
[6] 陈亮, 肖剑, 谢在库, 等. 对二甲苯结晶分离技术进展[J]. 现代化工, 2009, 29(2):10-14. CHEN L, XIAO J, XIE Z K, et al. Advances in p-xylene separation by crystallization[J]. Modern Chemical Industry, 2009, 29(2):10-14.
[7] 朱静, 丁雪峰, 李天祥, 等. 降膜结晶法在高纯硫酸制备中的应用[J]. 无机盐工业, 2014, 46(6):38-41. ZHU J, DING X F, LI T X, et al. Application of falling film crystallization process in preparation of high-purity sulfuric acid[J]. Inorganic Chemical Industry, 2014, 46(6):38-41.
[8] 朱政. 熔融结晶法提纯β-甲基萘研究[D]. 天津:天津大学, 2007. ZHU Z. The purification of β-methylnaphthalene by melt crystallization[D]. Tianjin:Tianjin University, 2007.
[9] KASYMBEKOV B A, MYASNIKOV S K, MALYUSOV V A. Separation of substances by fractional crystallization from outflowing liquid films[J]. Theoretical Foundations of Chemical Engineering, 1985, 19(1):15-21.
[10] 江建军. 液膜结晶过程的研究[D]. 天津:天津大学, 1988. JIANG J J. Study on the crystallization process of liquid film[D]. Tianjin:Tianjin University, 1988.
[11] BEIERLING T, MICOVIC J, LUTZE P, et al. Using complex layer melt crystallization models for the optimization of hybrid distillation/melt crystallization processes[J]. Chemical Engineering & Processing Process Intensification, 2014, 85:10-23.
[12] 张政, 张建文. 降膜结晶分离过程热、质及动量传递的数值模拟(Ⅰ):分区域统一模型[J]. 化工学报, 2001, 52(7):580-586. ZHANG Z, ZHANG J W. Numerical modeling of coupled momentum heat and mass transport in falling crystallization process (Ⅰ):Continuum model[J]. Journal of Chemical Industry and Engineering(China), 2001, 52(7):580-586.
[13] 张建文, 张政. 降膜结晶分离过程热、质及动量传递的数值模拟(Ⅱ):模拟计算[J]. 化工学报, 2001, 52(7):587-592. ZHANG J W, ZHANG Z. Numerical modeling of coupled momentum heat and mass transport in falling film crystallization process (Ⅱ):Simulation[J]. Journal of Chemical Industry and Engineering(China), 2001, 52(7):587-592.
[14] 刘安. 内外双降膜熔融结晶过程数值模拟[D]. 天津:天津大学, 2009. LIU A. Numerical simulation of double falling film melt crystallization process[D]. Tianjin:Tianjin University, 2009.
[15] BENNON W D, INCROPERA F P. A continuum model for momentum heat and species transport in binary solid-liquid phase change systems(Ⅰ):Model formulation[J]. International Journal of Heat & Mass Transfer, 1987, 30(10):2161-2170.
[16] BENNON W D, INCROPERA F P. A continuum model for momentum heat and species transport in binary solid-liquid phase change systems(Ⅱ):Application to solidification in a rectangular cavity[J]. International Journal of Heat & Mass Transfer, 1987, 30(10):2171-2187.
[17] BENNON W D, INCROPERA F P. Numerical analysis of binary solid-liquid phase change using a continuum model[J]. Numerical Heat Transfer, 1988, 13(3):277-296.
[18] JIANG X, HOU B, ZHAO Y, et al. Kinetics study on the liquid entrapment and melt transport of static and falling-film melt crystallization[J]. Industrial & Engineering Chemistry Research, 2012, 51(13):5037-5044.
[19] ZHANG B, YU B M, WANG H X, et al. A fractal analysis of permeability for power-law fluids in porous media[J]. Fractals-complex Geometry Patterns & Scaling in Nature & Society, 2006, 14(3):171-177.
[20] CAI J, YU B, ZOU M, et al. Fractal analysis of invasion depth of extraneous fluids in porous media[J]. Chemical Engineering Science, 2010, 65(18):5178-5186.
[21] JIANG X, HOU B, HE G, et al. Falling film melt crystallization (Ⅱ):Model to simulate the dynamic sweating using fractal porous media theory[J]. Chemical Engineering Science, 2013, 91(2):111-121.
[22] JIANG X, HOU B, WANG J, et al. Model to simulate the structure of a crystal pillar and optimize the separation efficiency in melt crystallization by fractal theory and technique[J]. Industrial & Engineering Chemistry Research, 2011, 50(17):10229-10245.
[23] SCHOLZ R, WANGNICK K, ULRICH J. On the distribution and movement of impurities in crystalline layers in melt crystallization processes[J]. Journal of Physics D Applied Physics, 1993, 26(8B):B156.
[24] BEAR J. Dynamics of Fluids in Porous Media[M]. America:Elsevier Pub. Co., 1972.
[25] HADDON W F, JOHNSON J F. Solubility data for p-xylene[J]. J. Chem. Eng. Data, 1964, 9(1):158-159.
[26] 车冠全, 古喜兰. 间二甲苯+对二甲苯二元系的固液相平衡[J]. 化学通报, 1995, (6):50-52. CHE G Q, GU X L. Solid-liquid equilibrium of system of m-xylene and p-xylene[J]. Chemistry, 1995, (6):50-52.
[27] JAKOB A, JOH R, ROSE C, et al. Solid-liquid equilibria in binary mixtures of organic compounds[J]. Fluid Phase Equilibria, 1995, 113(1):117-126.
[28] PORTER R S, JOHNSON J F. Extended xylene solubility studies[J]. Journal of Chemical & Engineering Data, 2002, 12(3):392-394.
[29] 郭艳姿. 二甲苯同分异构体二元系固-液相平衡研究[D]. 上海:同济大学, 2006. GUO Y Z. Study on the solid-liquid equilibrium of xylene isomer binary systems[D]. Shanghai:Tongji University, 2006.
[30] 陈亮, 肖剑, 谢在库, 等. 对二甲苯结晶过程的固液相平衡研究[J]. 聚酯工业, 2009, 22(1):7-11. CHEN L, XIAO J, XIE Z K, et al. Solid-liquid equilibrium study of p-xylene crystallization process[J]. Polyester Industry, 2009, 22(1):7-11.
[31] 郭思斯. 二甲苯同分异构体三元系固-液相平衡研究[D]. 上海:同济大学, 2008. GUO S S. Study on the solid-liquid equilibrium of xylene isomer ternary systems[D]. Shanghai:Tongji University, 2008.

[1] LI Desheng, ZHANG Chao, DENG Shihai, HU Zhifeng, LI Jinlong, LIU Yuanhui. Experimental study on effective nitrate removal from sewage by ZVI-based catalyzed reduction [J]. CIESC Journal, 2019, 70(3): 1065-1074.
[2] ZHANG Qian, LIU Xiangyang, CHEN Wang, WU Heng, XIAO Pengying, JI Fangying, LI Chen, NIAN Haiming. Preparation of a novel phosphorus removal filler and optimization of phosphate removal adsorption bed process [J]. CIESC Journal, 2019, 70(3): 1099-1110.
[3] ZHOU Xuebing, LIU Chanjuan, LUO Jinqiong, LIANG Deqing. Microscopic measurements on methane hydrate dissociation [J]. CIESC Journal, 2019, 70(3): 1042-1047.
[4] HE Changchun, XU Lei, CHEN Wei, XU Xiaofeng, OUYANG Pengwei. Mechanism prediction of flow-induced corrosion and optimization of protection measures in overhead system of atmospheric tower [J]. CIESC Journal, 2019, 70(3): 1027-1034.
[5] SHI Bowen, YIN Yanyan, LIU Fei. Optimal control strategies combined with PSO and control vector parameterization for batchwise chemical process [J]. CIESC Journal, 2019, 70(3): 979-986.
[6] MU Peng, GU Xiangbai, ZHU Qunxiong. Modeling and optimization of ethylene cracking feedstock scheduling based on P-graph [J]. CIESC Journal, 2019, 70(2): 556-563.
[7] LIU Qilei, FENG Kun, LIU Linlin, DU Jian, MENG Qingwei, ZHANG Lei. Reaction solvent design method based on Dragon descriptors and modified decision tree-genetic algorithm [J]. CIESC Journal, 2019, 70(2): 533-540.
[8] GUO Xiaozheng, LIU Linlin, ZHANG Lei, DU Jian. Property integration of batch process based on interceptors in semi-continuous operation [J]. CIESC Journal, 2019, 70(2): 516-524.
[9] YE Zhencheng, ZHOU Huanlan, RAO Debao. Hybrid modeling and optimization of acetylene hydrogenation process [J]. CIESC Journal, 2019, 70(2): 496-507.
[10] WU Changhao, LIU Linlin, ZHANG Lei, DU Jian. Inter-plant waste heat integration for industrial park using two medium fluids [J]. CIESC Journal, 2019, 70(2): 431-439.
[11] WANG Shenhan, KANG Lunwei, ZHANG Bingjian, CHEN Qinglin, PAN Ming, HE Chang. Energy minimization in hybrid desalination system of reverse osmosis and pressure retarded osmosis [J]. CIESC Journal, 2019, 70(2): 617-624.
[12] ZHU Jian, YANG Bo, WANG Yongjian, TANG Xiaojie, LI Hongguang. New operation optimization method with time series based on Levenshtein distance hierarchical clustering [J]. CIESC Journal, 2019, 70(2): 581-589.
[13] ZHU Jianyong, ZHANG Xuqian, YANG Hui, LU Rongxiu. Soft-sensing of Pr/Nd component content under different single illumination conditions [J]. CIESC Journal, 2019, 70(2): 780-788.
[14] BAI Junren, YI Jun, LI Qian, WU Ling, CHEN Xuemei. Multi-objective optimization of QPSO for thereaction-regeneration process [J]. CIESC Journal, 2019, 70(2): 750-756.
[15] XUE Yongfei, WANG Yalin, SUN Bei, LI Qianzhong, SUN Jiazhou. Improved state transfer algorithm-based kinetics parameter estimation for cascaded plug flow reactors [J]. CIESC Journal, 2019, 70(2): 607-616.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!