CIESC Journal ›› 2018, Vol. 69 ›› Issue (8): 3565-3576.doi: 10.11949/j.issn.0438-1157.20180101

Previous Articles     Next Articles

Performance analysis of double-end self-pumping mechanical seal for main coolant pump of sodium-cooled fast reactor

CHEN Guoqi, SUN Jianjun, SUN Dianfeng, MA Chenbo   

  1. College of Mechanical and Electrical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
  • Received:2018-01-22 Revised:2018-03-25 Online:2018-08-05 Published:2018-04-09
  • Supported by:

    supported by the National Natural Science Foundation of China (51505230) and the China Postdoctoral Science Foundation (2017M611822)。

Abstract:

Sealing performance of reactor coolant pump is an important indicator for safety evaluation of sodium-cooled fast reactor. A double-end self-pumping mechanical seal was proposed for certain type of coolant pump for sodium-cooled fast reactor. Fluent numerical simulation at conditions of orthogonal design of experiments was performed to study influence of structural and operational parameters on open force and leakage rate of end surface. The pressure adjustment range of blocking fluid was analyzed to meet the requirement of zero argon leakage in the pump chamber. The results show that although both affect the open force within the experimental range of these parameters, the influence of ratio of groove to face width is more significant than that of helix angle. The open force was increased with the increase of ratio of groove over face width and helix angle. Also, the ratio of groove to face width had a significant effect on the leakage rate, which was increased rapidly with the increase of the ratio of groove to face width. The relationship between pressure of blocking fluid with both leakage rate and open force was obtained for conditions of maximum speed and shutdown. The mechanical seal is assured to be safe and effective at 0.05 MPa pump working pressure as long as blocking fluid pressure is controlled within 0.0528-1.6378 MPa.

Key words: reactor coolant pump, mechanical seal, CFD, orthogonal test, numerical simulation, optimization

CLC Number: 

  • TH136

[1] 王玉明, 黄伟峰, 李永健. 核电站一回路用机械密封[J]. 摩擦学学报, 2011, 31(4):408-416. WANG Y M, HUANG W F, LI Y J. Mechanical seals for primary circuit of nuclear power plants[J]. Tribology, 2011, 31(4):408-416.
[2] 徐銤. 核电发展的第二代——快中子增殖堆核电站[J]. 核科学与工程, 1990, 10(4):337-349. XU M. The second generation for nuclear electricity-fast breeder reactor plant[J]. Nuclear Science and Engineering, 1990, 10(4):337-349.
[3] 王洲. 我国重点发展的先进堆型——快中子增殖堆[J]. 科技导报, 1992, 10(9):47-48. WANG Z. Stress should be put on developing the fast-breeder reactor[J]. Science and Technology Review, 1992, 10(9):47-48.
[4] 徐銤. 我国快堆发展战略目标研究[J]. 核科学与工程, 2008, 28(1):20-25. XU M. Fast reactor development strategy targets study in china[J]. Chinese Journal of Nuclear Science and Engineering, 2008, 28(1):20-25.
[5] 丁铜伟, 董博, 张强, 等. 钠冷快中子增殖堆安全监管重要关注点探讨[J]. 核动力工程, 2016, 37(s1):127-130. DING T W, DONG B, ZHANG Q, et al. Discussion on safety regulation major concerns of sodium-cooled fast breeder reactor[J]. Nuclear Power Engineering, 2016, 37(s1):127-130.
[6] 刘云娇. 俄BN-600型快堆因钠泄漏停运[J]. 国外核新闻, 1994, (2):18. LIU Y J. The Russian BN-600 fast reactor was shut down due to leakage of sodium[J]. Foreign Nuclear News, 1994, (2):18.
[7] 吴再丰. 日本"文殊号"快堆钠泄漏[J]. 科技潮, 1997, (5):30-31. WU Z F. The Japanese "wenshu" fast reactor sodium leak[J]. Tide of Science and Technology, 1997, (5):30-31.
[8] MARTIOSON A R. Design, development and testing of large-diameter, high-pressure seals or nuclear reactor, primary-coolant pumps-a challenge to the pump manufacturer[J]. Lubrication Engineering, 1980, 36(6):325-340.
[9] MARSI J A. Development of a 9 inch (228 mm) nuclear primary coolant seal[J]. Lubrication Engineering, 1989, 45(5):311-321.
[10] MARSI J A. Enclosed mechanical seal face design for brittle materials[J]. Lubrication Engineering, 1994, 50(1):11-15.
[11] 闫宝秋, 张兵, 文明基, 等. 高工况条件下双端面机械密封失效分析及改造[J]. 石油化工设备, 2016, 45(3):92-96. YAN B Q, ZHANG B, WEN M J, et al. Failure analysis of the duel mechanical seal under heavy working duties and its transformation[J]. Petro-chemical Equipment, 2016, 45(3):92-96.
[12] 马希金, 包春辉, 贾维斌. 基于流固耦合油气混输泵双端面机械密封的变形分析[J]. 甘肃科学学报, 2017, 29(3):114-116. MA X J, BAO C H, JIA W B. Deformation analysis on double mechanical seal of oil-gas multiphase pump based on fluid-structure interaction[J]. Journal of Gansu Sciences, 2017, 29(3):114-116.
[13] 文朋, 翟晔. 双端面机械密封在高危油泵上的应用[J]. 化学工程与装备, 2014, (5):102-104. WEN P, ZHAI Y. Application of double-end mechanical seal on high-risk oil pump[J]. Chemical Engineering & Equipment, 2014, (5):102-104.
[14] 王财生, 黄龙文, 秦瑶, 等. 双端面机械密封的摩擦学性能研究[J]. 华东理工大学学报(自然科学版), 2013, 39(5):636-640. WANG C S, HUANG L W, QIN Y, et al. Tribology performance research for double mechanical seal[J]. Journal of East China University of Science and Technology (Natural Science Edition), 2013, 39(5):636-640
[15] 陈汇龙, 邹强, 赵斌娟, 等. 中温高黏度介质双端面主密封热力特性分析[J]. 排灌机械工程学报, 2016, 34(11):967-973. CHEN H L, ZOU Q, ZHAO B J, et al. Analysis of temperature and thermal deformation of main seal in double mechanical seal in medium with moderate temperature and high viscosity[J]. Journal of Drainage and Irrigation Machinery Engineering, 2016, 34(1):967-973.
[16] 张磊, 刘艳英, 王创, 等. 双端面机械密封失效原因及解决措施[J]. 乙烯工业, 2011, 23(1):35-38. ZHANG L, LIU Y Y, WANG C, et al. Reason for failure of double mechanical seal and the countermeasures[J]. Ethylene Industry, 2011, 23(1):35-38.
[17] 孙业洞. 双端面机械密封使用故障分析[J]. 机械, 2012, 39(11):77-80. SUN Y D. Analysis on malfunctions of dual mechanical seals[J]. Mechanical, 2012, 39(11):77-80.
[18] 李超, 刘振全, 赵荣珍. 双端面机械密封在涡旋式天然气压缩机中的应用[J]. 流体机械, 2005, 33(7):49-51. LI C, LIU Z Q, ZHAO R Z. Application of double seal faces mechanical seal on the nature gas scroll compressor[J]. Fluid Machinery, 2005, 33(7):49-51.
[19] 孙见君, 王敏, 周敏, 等. 自泵送流体动压型机械密封:201310201473. 3[P]. 2013-05-28. SUN J J, WANG M, ZHOU M, et al. Self-pumping mechanical seal based on fluid dynamic pressure principle:201310201473. 3[P]. 2013-05-28.
[20] SUN J J, MA C B, YU Q P, et al. Numerical analysis on a new pump-out hydrodynamic mechanical seal[J]. Tribology International, 2017, 106(2):62-70.
[21] 周敏, 孙见君, 马晨波, 等. 自泵送流体动压型机械密封性能分析[J]. 化工学报, 2015, 66(2):687-694. ZHOU M, SUN J J, MA C B, et al. Performance analysis of hydrodynamic mechanical seals based on self-pumping principle[J]. CIESC Journal, 2015, 66(2):687-694.
[22] 顾东升, 孙见君, 马晨波, 等. 基于数值模拟的自泵送机械密封正交试验[J]. 化工学报, 2015, 66(7):2464-2473. GU D S, SUN J J, MA C B, et al. Orthogonal test of self-pumping mechanical seals based on numerical simulation[J]. CIESC Journal, 2015, 66(7):2464-2473.
[23] HU J B, TAO W J, ZHAO Y M, et al. Numerical analysis of general groove geometry for dry gas seals[J]. Applied Mechanics & Materials, 2014, 457:544-551.
[24] LI Y, SONG P Y, XU H J. Performance analyses of the spiral groove dry gas seal with inner annular groove[J]. Applied Mechanics & Materials, 2013, 420:51-55.
[25] WANG Q, CHEN H L, LIU T, et al. Research on performance of upstream pumping mechanical seal with different deep spiral groove[J]. IOP Conference Series:Earth and Environmental Science, 2012, 15(7):072019-072027
[26] BASU P. Analysis of a radial groove gas face seal[J]. ASLE Transactions, 1992, 35(1):11-20.
[27] NICOLESCU B N, PETRESCU T C. Homogenization of the Reynolds equation in the radial face seals case[J]. Asymptotic Analysis, 2013, 81(1):35-52.
[28] RUAN B. Finite element analysis of the spiral groove gas face seal at the slow speed and the low pressure conditions-slip flow consideration[J]. Tribology Transactions, 2000, 43(3):411-418.
[29] HU X P, SONG P Y. Theoretic analysis of the effect of real gas on the performance of the T-groove and radial groove dry gas seal[J]. Applied Mechanics and Materials, 2013, 271/272(1):1218-1223.
[30] 滕海英, 祝国强, 黄平, 等. 正交试验设计实例分析[J]. 药学服务与研究, 2008, 8(1):75-76. TENG H Y, ZHU G Q, HUANG P, et al. Orthogonal experiment design case analysis[J]. Pharm Care and Research, 2008, 8(1):75-76.
[31] 李云雁, 胡传荣. 试验设计与数据处理[M]. 北京:化学工业出版社, 2009. LI Y Y, HU C R. Experiment Design and Data Processing[M]. Beijing:Chemical Industry Press, 2009.

[1] WANG Shunhao, ZHU Wenli, HU Zhenggen, ZHOU Rui, YU Liu, WANG Bin, ZHANG Xiaobin. Numerical simulation and experimental validation of evaporation characteristics of scaled liquid hydrogen tank [J]. CIESC Journal, 2019, 70(3): 840-849.
[2] ZHANG Qian, LIU Xiangyang, CHEN Wang, WU Heng, XIAO Pengying, JI Fangying, LI Chen, NIAN Haiming. Preparation of a novel phosphorus removal filler and optimization of phosphate removal adsorption bed process [J]. CIESC Journal, 2019, 70(3): 1099-1110.
[3] TIAN Tao, LIU Bing, SHI Meisheng, AN Yaxiong, MA Jun, ZHANG Yanjun, XU Xinxi, ZHANG Donghui. Experiment and simulation of PSA process for small oxygen generator with two adsorption beds [J]. CIESC Journal, 2019, 70(3): 969-978.
[4] WU Xuan, LI Xiaorui, MA Jun, QIN Mengzhu, ZHOU Yahui, LI Haiguang. Behavior characteristics of bubble formation under various nozzle immersion modes [J]. CIESC Journal, 2019, 70(3): 901-912.
[5] SHI Bowen, YIN Yanyan, LIU Fei. Optimal control strategies combined with PSO and control vector parameterization for batchwise chemical process [J]. CIESC Journal, 2019, 70(3): 979-986.
[6] ZHOU Xin, DENG Ledong, WANG Hong, ZHU Xun, CHEN Rong, LIAO Qiang, DING Yudong. Effect of cooled cylindrical surface on droplet dynamic behavior [J]. CIESC Journal, 2019, 70(3): 883-891.
[7] CHEN Chuangang, DING Xuexing, LU Junjie, ZHANG Weizheng, CHEN Jinlin. Effect of friction pair interface micro-texture sequence on gas sealing performance [J]. CIESC Journal, 2019, 70(3): 1016-1026.
[8] MU Peng, GU Xiangbai, ZHU Qunxiong. Modeling and optimization of ethylene cracking feedstock scheduling based on P-graph [J]. CIESC Journal, 2019, 70(2): 556-563.
[9] LIU Qilei, FENG Kun, LIU Linlin, DU Jian, MENG Qingwei, ZHANG Lei. Reaction solvent design method based on Dragon descriptors and modified decision tree-genetic algorithm [J]. CIESC Journal, 2019, 70(2): 533-540.
[10] GUO Xiaozheng, LIU Linlin, ZHANG Lei, DU Jian. Property integration of batch process based on interceptors in semi-continuous operation [J]. CIESC Journal, 2019, 70(2): 516-524.
[11] YE Zhencheng, ZHOU Huanlan, RAO Debao. Hybrid modeling and optimization of acetylene hydrogenation process [J]. CIESC Journal, 2019, 70(2): 496-507.
[12] WU Changhao, LIU Linlin, ZHANG Lei, DU Jian. Inter-plant waste heat integration for industrial park using two medium fluids [J]. CIESC Journal, 2019, 70(2): 431-439.
[13] WANG Shenhan, KANG Lunwei, ZHANG Bingjian, CHEN Qinglin, PAN Ming, HE Chang. Energy minimization in hybrid desalination system of reverse osmosis and pressure retarded osmosis [J]. CIESC Journal, 2019, 70(2): 617-624.
[14] NI Chengzhen, DU Wenli, HU Guihua. Impact of turbulence model in coupled simulation of ethylene cracking furnace [J]. CIESC Journal, 2019, 70(2): 450-459.
[15] ZHU Jian, YANG Bo, WANG Yongjian, TANG Xiaojie, LI Hongguang. New operation optimization method with time series based on Levenshtein distance hierarchical clustering [J]. CIESC Journal, 2019, 70(2): 581-589.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] CAO Xing,DU Wenjing,CHENG Lin. Analyses on flow and heat transfer performance and entropy generation of heat exchanger with continuous helical baffles[J]. CIESC Journal, 2012, 63(8): 2375 -2382 .
[2] ZHANG Lanhe,LI Jun,GUO Jingbo,JIA Yanping,ZHANG Haifeng. Effect of EPS on activated sludge flocculation Ability , Settleability and surface properties[J]. CIESC Journal, 2012, 63(6): 1865 -1871 .
[3] CHEN Weidong, SUN Yan. EFFECT OF ADSORPTION DENSITY ON PORE DIFFUSIVITY OF PROTEINS IN ION EXCHANGER[J]. CIESC Journal, 2003, 54(2): 215 -220 .
[4] ZHOU Xinjian, CHEN Tingkuan. DETERMINATION OF FLOW RATE COEFFICIENT OF JET EXHAUSTING ATOMIZATION NOZZLE[J]. CIESC Journal, 2002, 53(10): 1092 -1094 .
[5] SUN Qinglei, LI Wen, LI Baoqing. RELATIONSHIP BETWEEN VOLATILE YIELD AND PETROGRAPHIC ANALYSIS DURING PYROLYSIS OF SHENMU MACERALS[J]. CIESC Journal, 2003, 54(2): 269 -272 .
[6] LIU Tang, QIAN Weizhong, WANG Zhanwen, WEI Fei, JIN Yong, LI Juncheng, LI Yongdan. PREPARATION OF HYDROGEN AND CARBON NANOTUBES via METHANE DECOMPOSITION IN FLUIDIZED-BED REACTOR[J]. CIESC Journal, 2003, 54(11): 1614 -1618 .
[7] ZHAO Zongbin, LI Wen, LI Baoqing. EFFECT OF MINERAL MATTER ON RELEASE OF NO DURING COAL CHAR COMBUSTION[J]. CIESC Journal, 2003, 54(1): 100 -106 .
[8] LI Rui, XU Chunjian, ZENG Aiwu, ZHOU Ming. CFD SIMULATION OF DISTILLATION TRAY BASED ON THREE DIMENSIONAL TWO-LAYER MODEL[J]. CIESC Journal, 2003, 54(2): 159 -163 .
[9] ZHAN Shuiqing1,ZHOU Jiemin1,WU Ye2,LI Yuan1,LIANG Yannan1,YANG Ying1. Dynamic measurement of thermophysical properties of molten salt and error correction method[J]. CIESC Journal, 2012, 63(8): 2341 -2347 .
[10] HAN Jiabin, WANG Jingkang. MEASUREMENT AND CORRELATION OF SOLUBILITY OF CAFFEINE IN WATER AND ETHANOL[J]. CIESC Journal, 2004, 55(1): 125 -128 .