CIESC Journal ›› 2018, Vol. 69 ›› Issue (8): 3390-3397.doi: 10.11949/j.issn.0438-1157.20171612

Previous Articles     Next Articles

Influence of twisty flow heat exchanger's structural parameters on flow field and temperature field

GU Xin1, LUO Yuankun1, XIONG Xiaochao1, WANG Ke1, TAO Zhilin2   

  1. 1 Key Laboratory of Process Heat Transfer and Energy Saving of Henan Province, Zhengzhou University, Zhengzhou 450002, Henan, China;
    2 Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450002, Henan, China
  • Received:2017-12-07 Revised:2018-05-25 Online:2018-08-05 Published:2018-06-01
  • Supported by:

    supported by the National Natural Science Foundation of China (21776263), the Science and Technology Research Program of Henan Province(182102310022) and the Key Research Program of Higher Education of Henan Province(18A470001).

Abstract:

Periodic whole cross-section computation models of twisty flow heat exchanger and segmental baffle heat exchanger are established respectively. The heat transfer coefficient, flow resistance and thermal performance are studied with CFD simulation. The influence of inclination angle of trapezoidal baffles, baffles width, baffles pitch and number of baffles on the heat transfer performance in the twisty flow heat exchanger was studied. The results showed that the inclination angle of trapezoidal baffles and baffles pitch have a significant effect on heat transfer performance, the effect of baffles width is secondary, and the number of baffles have no significant effect. When the thermal performance factor TEF of twisty flow heat exchanger reaches the best, compared to segmental baffle heat exchanger, the pressure drop decrease by 42.5% to 46.9%, the TEF is improved by 7.2% to 14.1%. The results of this paper provide a new scheme of the shell and tube heat exchanger for structure optimization and heat transfer enhancement.

Key words: twisty flow heat exchanger, CFD, heat transfer, numerical simulation, trapezoidal baffles

CLC Number: 

  • TK124

[1] 董其伍, 张垚. 换热器[M]. 北京:化学工业出版社, 2009. DONG Q W, ZHANG Y. Heat Exchanger[M]. Beijing:Chemical Industry Press, 2009.
[2] HAJABDOLLAHI H, NADERI M, ADIMI S. A comparative study on the shell and tube and gasket-plate heat exchangers:the economic viewpoint[J]. Applied Thermal Engineering, 2016, 92:271-282.
[3] 杜婷婷, 车凯, 王丹华, 等. 变螺距搭接螺旋折流板换热器综合性能[J]. 化工学报, 2015, 66(S2):143-152. DU T T, CHE K, WANG D H, et al. Comprehensive performance of variable-pitch overlapped helical baffled heat exchangers[J]. CIESC Journal, 2015, 66(S2):143-152.
[4] LIU W, LIU Z C, WANG Y S, et al. Flow mechanism and heat transfer enhancement in longitudinal-flow tube bundle of shell-and-tube heat exchanger[J]. Science in China, 2009, 52(10):2952-2959.
[5] 段振亚, 沈锋, 张俊梅, 等. 三螺旋折流板换热器多流路通道流动与传热数值模拟[J]. 化工学报, 2016, 67(S1):232-238. DUAN Z Y, SHEN F, ZHANG J M, et al. Numerical simulation of multi-flow and heat transfer characteristics in heat exchangers with triple-helical baffles.[J]. CIESC Journal, 2016, 67(S1):232-238.
[6] MAAKOUL A E, LAKNIZI A, SAADEDDLINE S, et al. Numerical design and investigation of heat transfer enhancement and performance for an annulus with continuous helical baffles in a double-pipe heat exchanger[J]. Energy Conversion & Management, 2017, 133:76-86.
[7] WANG Q, CHEN G, CHEN Q, et al. Review of improvements on shell and tube heat exchangers with helical baffles[J]. Heat Transfer Engineering, 2010, 31(2010):836-853.
[8] 董聪, 陈亚平, 吴嘉峰, 等. 三分螺旋折流板换热器水-水传热壳侧综合性能[J]. 化工学报, 2012, 63(3):721-727. DONG C, CHEN Y P, WU J F, et al. Water to water heat transfer on shell-side of trisection helical baffle heat exchangers.[J]. CIESC Journal, 2012, 63(3):721-727.
[9] 王斯民, 王萌萌, 顾昕, 等. 基于火积理论的螺旋折流板换热器结构优化[J]. 高校化学工程学报, 2016, 30(3):532-539. WANG S M, WANG M M, GU X, et al. Structure optimization of helical baffle heat exchangers using entransy theory[J]. J. Chem. Eng. Chinese Univ., 2016, 30(3):532-539.
[10] 张剑飞, 陶文铨, 何雅玲. 螺旋折流板换热器热力设计方法及其实验校核[J]. 中国电机工程学报, 2013, 33(26):75-80. ZHANG J F, TAO W Q, HE Y L. A calculation method for helical baffled heat exchanger design and experimental validation[J]. Proceedings of the CSEE, 2013, 33(26):75-80.
[11] 马雷, 王英双, 刘志春.变截面折流杆换热器的数值模拟[J]. 工程热物理学报, 2012, 33(1):113-117. MA L, WANG Y S, LIU Z C. Analysis of flow and heat transfer in rod baffle heat exchangers with rods of variable sections[J]. Journal of Engineering Thermophysics, 2012, 33(1):113-117.
[12] LUTCHA J, NEMCANSKY J. Performance improvement of tubular heat exchangers by helical baffles[J]. Chemical Engineering Research & Design, 1990, 68(3):263-270.
[13] ZHANG J F, HE Y L, TAO W Q. 3D numerical simulation on shell-and-tube heat exchangers with middle-overlapped helical baffles and continuous baffles(Ⅰ):Numerical model and results of whole heat exchanger with middle-overlapped helical baffles[J]. International Journal of Heat and Mass Transfer, 2009, 52(23/24):5371-5380.
[14] ZHANG J F, HE Y L, TAO W Q. 3D numerical simulation on shell-and-tube heat exchangers with middle-overlapped helical baffles and continuous baffles(Ⅱ):Simulation results of periodic model comparison between continuous and noncontinuous helical baffles[J]. International Journal of Heat and Mass Transfer, 2009, 52(23/24):5381-5389.
[15] WANG Q W, CHEN G D, CHEN Q Y, et al. Review of improvements on shell-and-tube heat exchangers with helical baffles[J]. Heat Transfer Engineering, 2010, 31(10):836-853.
[16] YOU Y H, FAN A W, LAI X J, et al. Experimental and numerical investigations of shell-side thermo-hydraulic performances for shell-and-tube heat exchanger with trefoil-hole baffles[J]. Applied Thermal Engineering, 2013, 50(1):950-956.
[17] MAAKOUL A E, LAKNIZI A, SAADEDDLINE S, et al. Numerical comparison of shell-side performance for shell and tube heat exchangers with trefoil-hole, helical and segmental baffles[J]. Applied Thermal Engineering, 2016, 109:175-185.
[18] 王英双, 张晓屿, 刘志春, 等. 花格板换热器的流动与传热[J]. 化工学报, 2012, 63(S1):99-106. WANG Y S, ZHANG X Y, LIU Z C, et al. Fluid flow and heat transfer study for flower baffle heat exchanger[J]. CIESC Journal, 2012, 63(S1):99-106.
[19] WEN J, YANG H Z, WANG S M, et al. Numerical investigation on baffle configuration improvement of the heat exchanger with helical baffles[J]. Energy Conversion and Management, 2015, 86:438-448.
[20] 古新, 董其伍, 刘敏珊. 帘式折流片换热器强化传热数值研究[J]. 高校化学工程学报, 2010, 24(2):340-345. GU X, DONG Q W, LIU M S. Numerical research on heat transfer enhancement of shutter baffle heat exchanger[J]. Journal of Chemical Engineering of Chinese Universities, 2010, 24(2):340-345.
[21] GU X, LIU B, WANG Y Q, et al. Heat transfer and flow resistance performance of shutter baffle heat exchanger with triangle tube layout in shell side[J]. Advances in Mechanical Engineering, 2016, 8(3):1-8.
[22] ROBERT W S, THOMAS G L. Process Heat Transfer[M]. 2nd ed. USA:Academic Press, 2014:199-222.
[23] 古新, 秦晓柯, 王永庆, 等. 倾斜折流栅式换热器壳程流体流动与传热特性[J]. 化工进展, 2017, 36(10):3584-3589. GU X, QIN X K, WANG Y Q, et al. Research on fluid flow and heat transfer characteristics in shell side of inclined shutter baffle heat exchanger[J]. Chemical Industry and Engineering Progress, 2017, 36(10):3584-3589.
[24] PROMVONGE P, KOOLNAPADOL N, PIMSARN M, et al. Thermal performance enhancement in a heat exchanger tube fitted with inclined vortex rings[J]. Applied Thermal Engineering, 2014, 62(1):285-292.
[25] WEN J, YANG H Z, WANG S M, et al. Experimental investigation on performance comparison for shell-and-tube heat exchangers with different baffles[J]. International Journal of Heat and Mass Transfer, 2015, 84:990-997.
[26] SAHA A K, MALIK T. Mixed convective flow and heat transfer through a horizontal channel with surface mounted obstacles[J]. Enhanced Heat Transfer, 2012, 19(4):331-329.

[1] SHI Suli, LU Yuanwei, YU Qiang, WU Yuting. Optimization of heat removal modes for heat exchanger in molten salt single storage tank [J]. CIESC Journal, 2019, 70(3): 857-864.
[2] WANG Shunhao, ZHU Wenli, HU Zhenggen, ZHOU Rui, YU Liu, WANG Bin, ZHANG Xiaobin. Numerical simulation and experimental validation of evaporation characteristics of scaled liquid hydrogen tank [J]. CIESC Journal, 2019, 70(3): 840-849.
[3] LIU Xiaoshi, ZOU Deqiu, HE Ruijun, MA Xianfeng. Preparation and heat transfer characteristics of GO/paraffin composite phase change emulsions [J]. CIESC Journal, 2019, 70(3): 1188-1197.
[4] TIAN Tao, LIU Bing, SHI Meisheng, AN Yaxiong, MA Jun, ZHANG Yanjun, XU Xinxi, ZHANG Donghui. Experiment and simulation of PSA process for small oxygen generator with two adsorption beds [J]. CIESC Journal, 2019, 70(3): 969-978.
[5] ZHANG Hang, WENG Jianhua, CUI Xiaoyu. Heat transfer performance of pulsating heat pipe with hygroscopic salt solution [J]. CIESC Journal, 2019, 70(3): 874-882.
[6] HUANG Zhijia, LUO Liang, KE Rui, ZHUO Feifei, ZHONG Liang. Dehumidification performance experiment of hydrophilic non-woven PVC composite structured packing [J]. CIESC Journal, 2019, 70(3): 913-921.
[7] WU Xuan, LI Xiaorui, MA Jun, QIN Mengzhu, ZHOU Yahui, LI Haiguang. Behavior characteristics of bubble formation under various nozzle immersion modes [J]. CIESC Journal, 2019, 70(3): 901-912.
[8] ZHOU Xin, DENG Ledong, WANG Hong, ZHU Xun, CHEN Rong, LIAO Qiang, DING Yudong. Effect of cooled cylindrical surface on droplet dynamic behavior [J]. CIESC Journal, 2019, 70(3): 883-891.
[9] CHEN Chuangang, DING Xuexing, LU Junjie, ZHANG Weizheng, CHEN Jinlin. Effect of friction pair interface micro-texture sequence on gas sealing performance [J]. CIESC Journal, 2019, 70(3): 1016-1026.
[10] WU Changhao, LIU Linlin, ZHANG Lei, DU Jian. Inter-plant waste heat integration for industrial park using two medium fluids [J]. CIESC Journal, 2019, 70(2): 431-439.
[11] NI Chengzhen, DU Wenli, HU Guihua. Impact of turbulence model in coupled simulation of ethylene cracking furnace [J]. CIESC Journal, 2019, 70(2): 450-459.
[12] ZHANG Huahai, WANG Tiefeng. Generality of CFD-PBM coupled model for simulations of gas-liquid bubble column [J]. CIESC Journal, 2019, 70(2): 487-495.
[13] XIA Hongtao, ZOU Siyu, XIAO Jie. Numerical simulation of shear-thinning droplet impacting on randomly rough surfaces [J]. CIESC Journal, 2019, 70(2): 634-645.
[14] LIU Zhongyan, SUN Dahan, JIN Xu, WANG Tianhao, MA Yitai. Evaluation research on boiling heat transfer model of CO2 in tube [J]. CIESC Journal, 2019, 70(1): 56-64.
[15] HU Chenhui, WANG Yifei, BAO Zebin, YU Guangsuo. Effect of solid particles in evaporative hot water tower on bubble movement [J]. CIESC Journal, 2019, 70(1): 39-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] CAO Xing,DU Wenjing,CHENG Lin. Analyses on flow and heat transfer performance and entropy generation of heat exchanger with continuous helical baffles[J]. CIESC Journal, 2012, 63(8): 2375 -2382 .
[2] ZHANG Lanhe,LI Jun,GUO Jingbo,JIA Yanping,ZHANG Haifeng. Effect of EPS on activated sludge flocculation Ability , Settleability and surface properties[J]. CIESC Journal, 2012, 63(6): 1865 -1871 .
[3] CHEN Weidong, SUN Yan. EFFECT OF ADSORPTION DENSITY ON PORE DIFFUSIVITY OF PROTEINS IN ION EXCHANGER[J]. CIESC Journal, 2003, 54(2): 215 -220 .
[4] ZHOU Xinjian, CHEN Tingkuan. DETERMINATION OF FLOW RATE COEFFICIENT OF JET EXHAUSTING ATOMIZATION NOZZLE[J]. CIESC Journal, 2002, 53(10): 1092 -1094 .
[5] SUN Qinglei, LI Wen, LI Baoqing. RELATIONSHIP BETWEEN VOLATILE YIELD AND PETROGRAPHIC ANALYSIS DURING PYROLYSIS OF SHENMU MACERALS[J]. CIESC Journal, 2003, 54(2): 269 -272 .
[6] LIU Tang, QIAN Weizhong, WANG Zhanwen, WEI Fei, JIN Yong, LI Juncheng, LI Yongdan. PREPARATION OF HYDROGEN AND CARBON NANOTUBES via METHANE DECOMPOSITION IN FLUIDIZED-BED REACTOR[J]. CIESC Journal, 2003, 54(11): 1614 -1618 .
[7] ZHAO Zongbin, LI Wen, LI Baoqing. EFFECT OF MINERAL MATTER ON RELEASE OF NO DURING COAL CHAR COMBUSTION[J]. CIESC Journal, 2003, 54(1): 100 -106 .
[8] LI Rui, XU Chunjian, ZENG Aiwu, ZHOU Ming. CFD SIMULATION OF DISTILLATION TRAY BASED ON THREE DIMENSIONAL TWO-LAYER MODEL[J]. CIESC Journal, 2003, 54(2): 159 -163 .
[9] ZHAN Shuiqing1,ZHOU Jiemin1,WU Ye2,LI Yuan1,LIANG Yannan1,YANG Ying1. Dynamic measurement of thermophysical properties of molten salt and error correction method[J]. CIESC Journal, 2012, 63(8): 2341 -2347 .
[10] HAN Jiabin, WANG Jingkang. MEASUREMENT AND CORRELATION OF SOLUBILITY OF CAFFEINE IN WATER AND ETHANOL[J]. CIESC Journal, 2004, 55(1): 125 -128 .