CIESC Journal ›› 2018, Vol. 69 ›› Issue (6): 2664-2671.doi: 10.11949/j.issn.0438-1157.20171310

Previous Articles     Next Articles

Degradation mechanism of Astrazon Pink FG solution by glow discharge electrolysis

LU Quanfang1,2, YU Jie2, YANG Cailing2, LI Minrui3   

  1. 1. Editorial Department of the University Journal, Northwest Normal University, Lanzhou 730070, Gansu, China;
    2. College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, Gansu, China;
    3. School of Geography and Tourism, Shaanxi Normal University, Xi'an 710119, Shaanxi, China
  • Received:2017-09-27 Revised:2017-12-11 Online:2018-06-05 Published:2017-12-18
  • Supported by:

    supported by the National Natural Science Foundation of China (21567025, 21367023) and the Natural Science Foundation of Gansu Province (17JR5RA077, 17JR5RA075).


The degradation process of Astrazon Pink FG was investigated in aqueous solution by glow discharge electrolysis (GDE) technique. The active species such as HO·, H· and O· were detected by emission spectrum of GDE. The decolorization rate, removal rate of total organic carbon (TOC), solution pH, conductivity and intermediate products of the degradation solution at different discharge time were determined by ultraviolet spectrum, TOC analyzer, pH meter, conductivity meter and ion chromatography. The degradation mechanism of Astrazon Pink FG solutions was proposed according to various analysis results. The results showed that under the 600 V discharge voltage, highly active species such as HO·, O· and H· are produced. The decolorization rate and TOC removal rate of 200 ml 20 mg/L Astrazon Pink FG are up to 99.0% and 72.6% after treating 120 min. The solution pH is decreased and then increased. However, the conductivity of degradation solution is increased and then decreased. Ion chromatography test showed that the degradation process can produce a variety of small organic molecules, such as lactate, acetate, formate, malonate, malate, succinate and oxalate. Hydroxyl radical (HO·) plays a major role for the degradation of Astrazon Pink FG. It is found that under the HO·, the chemical bonds of Astrazon Pink FG is broken, and then hydroxylation of benzene ring is formed. After that, some of benzoquinone and lower molecular weight organic acids are produced. Finally, all of organic compounds are completely mineralized into Cl-, NO3-, CO2 and H2O.

Key words: GDE, plasma, dye, waste water, degradation, HO·, degradation mechanism

CLC Number: 

  • X703

[1] WANG X Y, ZHOU M H, JIN X L. Application of glow discharge plasma for wastewater treatment[J]. Electrochimica Acta, 2012, 83(12):501-512.
[2] 王齐, 赵进才, 丛燕青, 等. 无定形TiO2可见光敏化降解染料污染物[J]. 催化学报, 2011, 32(6):1076-1082. WANG Q, ZHAO J C, CONG Y Q, et al. Photo-sensitized degradation of dye pollutants on amorphous TiO2 under visible light irradiation[J]. Chinese Journal of Catalysis, 2011, 32(6):1076-1082.
[3] 孙怡, 于利亮, 黄浩斌, 等. 高级氧化技术处理难降解有机废水的研发趋势及实用化进展[J]. 化工学报, 2017, 68(5):1743-1756. SUN Y, YU L L, HUANG H B, et al. Research trend and practical development of advanced oxidation process on degradation of recalcitrant organic wastewater[J]. CIESC Journal, 2017, 68(5):1743-1756.
[4] 刘琰, 孙德智. 高级氧化技术处理染料废水的研究进展[J]. 工业水处理, 2006, 26(6):1-5. LIU Y, SUN D Z. Study progress of dye was tewater treatment by advanced oxidation processes[J]. Industrial Water Treatment, 2006, 26(6):1-5.
[5] 张亚平, 韦朝海. 光Fenton氧化降解染料阳离子红GTL[J]. 中南大学学报(自然科学版), 2008, 39(4):688-693. ZHANG Y P, WEI C H. Oxidation degradation of cationic red GTL by photo-Fenton[J]. Journal of Center South University (Science and Technology), 2008, 39(4):688-693.
[6] 陈水平, 汪玉庭. TiO2-CS微球光催化降解阳离子桃红的研究[J]. 武汉大学学报(理学版), 2003, 49(6):735-739. CHEN S P, WANG Y T. Study on the photocatalytic degradation of Cationic Pink FG by using TiO2-CS microbeads[J]. Journal of Wuhan University (Natural Science), 2003, 49(6):735-739.
[7] 郑继东, 陆泉芳, 俞洁, 等. 辉光放电电解等离子体降解水体中的罗丹明B[J]. 环境科学学报, 2017, 37(6):2164-2170. ZHENG J D, LU Q F, YU J, et al. Degradation of Rhodamine B in aqueous solution by glow discharge electrolysis plasma[J]. Acta Scientiae Circumstantiae, 2017, 37(6):2164-2170.
[8] JOSHI R P, THAGARD S M. Streamer-like electrical discharges in water (part Ⅱ):Environmental applications[J]. Plasma Chemistry and Plasma Processing, 2013, 33(1):17-49.
[9] SUN B, SATO M, CLEMENTS J S. Optical study of active species produced by a pulsed streamer corona discharge in water[J]. Journal of Electrostatics, 1997, 39(3):189-202.
[10] JIANG B, ZHENG J T, QIU S, et al. Review on electrical discharge plasma technology for wastewater remediation[J]. Chemical Engineering Journal, 2014, 236(2):348-368.
[11] SENGUPTA S K. Contact glow discharge electrolysis:its origin, plasma diagnostics and nonfaradaic chemical effects[J]. Plasma Sources Science Technology, 2015, 24(6):063001.
[12] BUDIKANIA T S, IRAWAN C, AFRIANI K, et al. Degradation of linear alkylbenzene sulfonate (LAS) by using multi-contact glow discharge electrolysis (m-CGDE) and Fe2+ ion as catalyst[J]. Journal of Environmental Chemical Engineering, 2017, 5(3):2346-2349.
[13] LU Q F, YU J, GAO J Z. Degradation of 2,4-dichlorophenol by using glow discharge electrolysis[J] Journal of Hazardous Materials, 2006, 136(3):526-531.
[14] WANG L, LIU Y J. Enhancement of phenol degradation by electron acceptors in anodic contact glow discharge electrolysis[J]. Plasma Chemistry and Plasma Processing, 2012, 32(4):715-722.
[15] WANG B W, DONG B, XU M, et al. Degradation of methylene blue using double-chamber dielectric barrier discharge reactor under different carrier gases[J]. Chemical Engineering Science, 2017, 168:90-100.
[16] 陆泉芳, 俞洁. 辉光放电等离子体降解模拟染料废水的研究[J]. 环境科学学报, 2006, 26(11):1799-1803. LU Q F, YU J. Degradation of dye wastewater by using glow discharge electrolysis plasma[J]. Acta Scientiae Circumstantiae, 2006, 26(11):1799-1803.
[17] 杨恕修, 陆泉芳, 孙对兄, 等. 液相辉光放电原子发射光谱法测定溶液中Cd的方法研究[J]. 分析测试学报, 2016, 35(6):662-667. YANG S X, LU Q F, SUN D X, et al. Determination of cadmium in aqueous solution by liquid glow discharge-atomic emission spectrometry[J]. Journal of Instrumental Analysis, 2016, 35(6):662-667.
[18] 张先炳, 袁佳佳, 董文艺, 等. 芬顿法处理活性艳红X-3B的试验优化及降解规律[J]. 化工学报, 2013, 64(3):1049-1054. ZHANG X B, YUAN J J, DONG W Y, et al. Process optimization for degradation of reactive Brilliant Red X-3B by Fenton's reagent[J]. CIESC Journal, 2013, 64(3):1049-1054.
[19] SENGUPTA S K. Contact glow discharge electrolysis:a novel tool for manifold applications[J]. Plasma Chemistry and Plasma Processing, 2017, 34(4):897-945.
[20] JAMRÓZ P, GR?DA K, POHL P, et al. Atmospheric pressure glow discharges generated in contact with flowing liquid cathode:production of active species and application in wastewater purification processes[J]. Plasma Chemistry and Plasma Processing, 2014, 34(1):25-37.
[21] SUN B, KUNITOMO S, IGARASHI C. Characteristics of ultraviolet light and radicals formed by pulsed discharge in water[J]. Journal of Physics D:Applied Physics, 2006, 39(17):3814-3820.
[22] LIU Y J, SUN B, WANG L, et al. Characteristics of light emission and radicals formed by contact glow discharge electrolysis of an aqueous solution[J]. Plasma Chemistry and Plasma Processing, 2012, 32(2):359-368.
[23] 刘永军, 孙冰, 王蕾. 液相隔膜辉光放电等离子体自由基发射光谱研究[J]. 光谱学与光谱分析, 2013, 33(3):790-793. LIU Y J, SUN B, WANG L. Emission spectroscopic study on radicals generated in liquid-phase diaphragm glow discharge plasma[J]. Spectroscopy and Spectral Analysis, 2013, 33(3):790-793.
[24] 李景宁. 有机化学:上册[M]. 5版. 北京:高等教育出版社, 2012. LI J N. Organic Chemistry:Volume One[M]. 5th ed. Beijing:Higher Education Press, 2012.
[25] YU J, ZHENG J D, LU Q F, et al. Selective adsorption and reusability behavior for Pb2+ and Cd2+ on chitosan/poly(ethylene glycol)/poly(acrylic acid) adsorbent prepared by glow-discharge electrolysis plasma[J]. Colloid & Polymer Science, 2016, 294(10):1585-1598.
[26] BRISSET J L, MOUSSA D, DOUBLA A, et al. Chemical reactivity of discharges and temporal post-discharges in plasma treatment of aqueous media:examples of gliding discharge treated solutions[J]. Industrial & Engineering Chemistry Research, 2008, 47(16):5761-5781.
[27] TEZUKA M, IWASAKI M. Liquid-phase reactions induced by gaseous plasma. Decomposition of benzoic acids in aqueous solution[J]. Plasmas & Ions, 1999, 2(1):23-26.
[28] GAO J, YU J, LU Q, et al. Decoloration of alizarin red S in aqueous solution by glow discharge electrolysis[J]. Dyes & Pigments, 2008, 76(1):47-52.
[29] LIU Y, JIANG X. Phenol degradation by a nonpulsed diaphragm glow discharge in an aqueous solution[J]. Environmental Science and Technology, 2005, 39(21):8512-8517.
[30] TEZUKA M, IWASAKI M. Plasma induced degradation of chlorophenols in an aqueous solution[J]. Thin Solid Films, 1998, 316(1):123-127.
[31] FUKUSHIMA M. The fate of aniline after a photo-Fenton reaction in aqueous system containing iron(Ⅲ), humic acid, and hydrogen peroxide[J]. Environmental Science and Technology, 2000, 34(10):2006-2013.

[1] KANG Lixia, MA Chenlu, LIU Yongzhong. Operation optimization of modularized energy storage of retired batteries in hybrid power systems [J]. CIESC Journal, 2019, 70(2): 599-606.
[2] PAN Lulu, WU Danjing, LIU Weiping. Electrical performance of MFC-MEC coupling system and treatment of heavy metal wastewater containing cadmium [J]. CIESC Journal, 2019, 70(1): 242-250.
[3] LUO Kai, WANG Jianhua, YU Junhuo, WENG Jun. Effect of methane concentration on diamond film in high power microwave plasma system [J]. CIESC Journal, 2018, 69(S2): 505-511.
[4] CUI Lingna, LIU Yuejun. Synthesis process optimization and degradation properties of PLA/PBAu block copolymer [J]. CIESC Journal, 2018, 69(9): 4075-4082.
[5] GENG Lili, YANG Kaixu, ZHANG Nuowei, CHEN Binghui. Synergetic effect of Ru and Cu on catalytic wet oxidation of ammonia-wastewater [J]. CIESC Journal, 2018, 69(9): 3869-3878.
[6] SONG Dihui, AN Luyang, ZHANG Litao, ZHANG Yafeng, XU Xinwei, WANG Yunan, WEI Huangzhao. Optimization of electrochemical coupling system process for coking waste water pretreatment by response surface method [J]. CIESC Journal, 2018, 69(9): 4001-4011.
[7] LI Dianxin, HU Nan, HUANG Chao, DING Dexin, LI Guangyue, WANG Yongdong. Experimental study on U(Ⅵ) bioreduction by incubated sulfate reducing bacteria sediment in groundwater [J]. CIESC Journal, 2018, 69(8): 3619-3625.
[8] CUI Haichao, CHEN Xianhui, WANG Cheng, XIA Weidong. Contrastive analysis of exergy in carbon black process of plasma method and furnace method [J]. CIESC Journal, 2018, 69(7): 2815-2821.
[9] YANG Bin, SU Qi, YANG Gaoling, KUANG Mengjie, ZHANG Lina, SHI Anhong, LIU Baixiong. Preparation and adsorption properties of magnesium oxide via spray drying [J]. CIESC Journal, 2018, 69(7): 3068-3075.
[10] LIU Xinhua, ZHOU Kun, HAN Jie, CHEN Zhihui, LI Huijuan. Scale/corrosion inhibition and biodegradation of lysine modified polyaspartic acid [J]. CIESC Journal, 2018, 69(5): 2127-2136.
[11] ZHEN Wenyuan, LI Qing. Preparation of TiO2/attapulgite composite photocatalyst by supercritical fluid drying method [J]. CIESC Journal, 2018, 69(5): 2290-2298.
[12] CHENG Ben'ai, JIA Hui, YANG Guang, LIU Wenbin, ZHANG Hongwei, WANG Jie. Analysis of synergistic effects of process factors on energy distribution in MFCs [J]. CIESC Journal, 2018, 69(5): 2242-2249.
[13] LIANG Xingtang, ZHONG Shuming, LIU Zijie, ZHENG Yunying, ZHANG Ruirui, JIAO Shufei, LIAO Riquan, WANG Yun, YIN Yanzhen. Chitin/polyethyleneimine composite as an adsorbent of aqueous Cr (Ⅵ) [J]. CIESC Journal, 2018, 69(5): 2255-2262.
[14] XU Wenrong, ZHANG Jie, ZHENG Fengyi, ZHANG Yucang. Research progress on mechanisms of acid-catalyzed cellulose and chitin liquefaction to small molecular chemicals under atmospheric pressure [J]. CIESC Journal, 2018, 69(4): 1288-1298.
[15] CHEN Xi, WANG Jianfang, QIAN Feiyue, GAO Junjun, SHEN Yaoliang, ZHOU Feng. Start-up of high-performance CANON reactor by alternating continuous flow and sequencing batch operation modes [J]. CIESC Journal, 2018, 69(4): 1695-1702.
Full text



No Suggested Reading articles found!