CIESC Journal ›› 2018, Vol. 69 ›› Issue (7): 2972-2978.doi: 10.11949/j.issn.0438-1157.20171251

Previous Articles     Next Articles

Synchronous thickness measurements of flowing liquid film on horizontal surface by ultrasonic pulse-echo and laser absorption spectroscopy methods

SU Mingxu, MUHAMMAD Abdul Ahad, JIANG Yong, WU Wei, YANG Huinan   

  1. School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
  • Received:2017-09-12 Revised:2018-03-30 Online:2018-07-05 Published:2018-03-30
  • Supported by:

    supported by the National Natural Science Foundation of China (51676130, 51776129, 51306123) and the Joint Specialized Research Foundation for the Doctoral Program of Higher Education (20133120120008).

Abstract:

Because of common existence of liquid film flow in industrial processes, it's crucial to study methods for measuring thickness of moving liquid film. Measurement accuracy of both ultrasonic pulse-echo and laser absorption spectroscopy methods was validated by calibration standards of known film thicknesses (100-1000 μm). The coefficient of variation was 1.07% for ultrasonic pulse-echo method and 1.29% for laser absorption spectroscopy method. Then, thickness of flowing liquid film was measured by these two methods. The average film thicknesses were in good agreement for two methods when liquid film flow was at low/medium/high velocity. At three corresponding velocities, the difference of average film thicknesses between these two methods were 16.59, 16.26 and 13.36 μm, and the relative standard deviation of film thickness was 0.29%, 7.71% and 25.37%, respectively. Furthermore, both methods detected same number of fluctuations of liquid film within 1 s cycle at three different velocities.

Key words: film, measurement, experiment validation, ultrasonic pulse-echo method, laser absorption spectroscopy method

CLC Number: 

  • TK31

[1] YANG H N, GUO X L, ZHOU W, et al. Investigation on liquid film of urea-water solutions with diode laser absorption spectroscopy[J]. Experiments in Fluids, 2015, 56(4):1-7.
[2] 古大田, 朱家骅. 动态液膜厚度测试技术的研究[J]. 化工学报,1988, 39(3):374-378. GU D T, ZHU J H. Research of dynamic liquid film thickness test technology[J]. Journal of Chemical Industry and Engineering(China), 1988, 39(3):374-378.
[3] 陈世昌, 马建平, 张先明, 等. 竖直降液膜流动在反应工程中的应用[J]. 化工进展, 2014, 33(10):2528-2534. CHEN S C, MA J P, ZHANG X M, et al. Advances in application of falling liquid film for reaction engineering[J]. Chemical Industry and Engineering Progress, 2014, 33(10):2528-2534.
[4] 瞿一妹. 变表面粘度的含不溶性活性剂垂直液膜流动特性研究[D]. 北京:华北电力大学, 2016. QU Y M. Study on the liquid membrane flow characteristics of the nonsoluble surfactant with variable surface viscosity[D]. Beijing:North China Electric Power University, 2016.
[5] 方书起, 武晓伟. 垂直管外降膜的液膜流动特性研究[J]. 郑州大学学报(工学版), 2014, 35(2):88-92. FANG S Q, WU X W. Study on the flow characteristics of the liquid membrane of the vertical tube[J]. Journal of Zhengzhou University(Engineering Science), 2014, 35(2):88-92.
[6] 颜雪娟. 降膜蒸发器液膜流动对传热性能的影响[J]. 机械设计与研究, 2015,(6):20-23. YAN X J. Experimental study on the influence of the liquid film flow on heat transfer performance in falling film evaporators[J]. Journal of Machine Design and Research, 2015, (6):20-23.
[7] PIOTR C. Industrial scale engineering estimation of the heat transfer in falling film juice evaporators[J]. Applied Thermal Engineering, 2017, 123.
[8] 王文武, 李春国, 王新军, 等. 金属表面流动液膜厚度的电导法测量技术研究[J]. 东方汽轮机, 2010, (1):21-25. WANG W W, LI C G, WANG X J, et al. A study on measurement of thickness of thin liquid film on metal surfaces[J]. Dongfang Turbine, 2010, (1):21-25.
[9] 宋建, 韦胜杰, 于意奇, 等. 竖直平板上电容法测量水膜厚度方法评价[J]. 计量技术, 2011, (9):15-18. SONG J, WEI S J, YU Y Q, et al. Measurement of water film thickness method by capacitance method on vertical plate[J]. Measurement Technique, 2011, (9):15-18.
[10] LIU J, DECLERCQ N F. Pulsed ultrasonic comb filtering effect and its applications in the measurement of sound velocity and thickness of thin plates[J]. Ultrasonics, 2016, 75:199.
[11] 潘荣宝. 超声测厚仪及厚度[J]. 压力容器, 1996, (1):58-63. PAN R B. Ultrasonic thickness gauge and thickness[J]. Pressure Vessel Technology, 1996, (1):58-63.
[12] 李翔. 影响超声测厚准确性的因素[J]. 中国科技信息, 2010, (17):50. LI X. Factors that affect the accuracy of ultrasonic thickness measurement[J]. China Science and Technology Information, 2010, (17):50.
[13] 陈越超, 周晓军, 杨辰龙, 等. 厚截面复合材料局域孔隙超声检测方法[J]. 农业机械学报, 2015, 46(6):372-378. CHEN Y C, ZHOU X J, YANG C L, et al. Ultrasonic testing method for localized void defect identification in thick section composites[J]. Transactions of The Chinese Society of Agricultural Machinery, 2015, 46(6):372-378.
[14] 李一博, 齐翔, 王会芳. 激光超声溢油油膜厚度遥测方法试验研究[J]. 纳米技术与精密工程, 2017, 15(3):159-167. LI Y B, QI X, WANG H F. Experimental study on thickness measuring method of oil-on-water using laser-ultrasonic technique[J]. Nanotechnology and Precision Engineering, 2017, 15(3):159-167.
[15] 李书娜. 基于超声波测厚的冶金锯片磨削厚度测量的研究[J]. 机械工程与自动化, 2017, (3):132-133. LI S N. Measurement of grinding thickness of metallurgical saw baled based on ultrasonic thickness measurement[J]. Mechanical Engineering and Automation, 2017, (3):132-133.
[16] 叶子义. 超声波检测技术在无缝钢管质量检测中的运用[J]. 冶金丛刊, 2017, (4):88-89. YE Z Y. Application of ultrasonic testing technology in quality testing of seamless steel tube[J]. Engineering Technology and Application, 2017, (4):88-89.
[17] HULBURT E T, NEWELL T A. Optical measurement of liquid film thickness and wave velocity in liquid flows[J]. Experiments in Fluids, 1996, 21(5):357-362.
[18] SHEDD T A, NEWELL T A. Automate optical liquid film thickness measurement method[J]. Review of Scientific Instruments, 1998, 69(12):4205-4213.
[19] KULL E, WILTAFSKY G, STOLZ W, et al. Two-dimensional visualization of liquid layers on transparent walls[J]. Optics Letters, 1997, 22(9):645-647.
[20] 杨晓涛, 费红姿, 谢文强. 基于可调谐激光吸收光谱技术的柴油机排放NO浓度瞬态测量[J]. 光谱学与光谱分析, 2017, 37(6):1960-1964. YANG X T, FEI H Z, XIE W Q. A transient measurement of NO concentration for diesel engine emissions by tunable laser absorption spectroscopy technique[J]. Spectroscopy and Spectral Analysis, 2017, 37(6):1960-1964.
[21] 杨斌, 潘科玮, 杨荟楠, 等. 波长扫描直接吸收光谱法燃烧诊断技术适用情况讨论[J]. 上海理工大学学报, 2015, (5):445-449. YANG B, PAN K W, YANG H N, et al. Application conditions of scanned-wavelength direct absorption spectroscopy for combustion diagnostics[J]. Journal of University of Shanghai for Science and Technology, 2015, (5):445-449.
[22] 屈东胜, 洪延姬, 王广宇, 等. 基于激光吸收光谱技术的非均匀流场气体参数测量研究[J]. 光谱学与光谱分析, 2017, 37(7):2004-2009. QU D S, HONG Y J, WANG G Y, et al. Measurement of gas parameters based on the laser absorption spectroscopy in non-uniform flow[J]. Spectroscopy and Spectral Analysis, 2017, 37(7):2004-2009.
[23] PORTER J M, JEFFRIES J B, HANSON R K. Mid-infrared laserabsorption diagnostic for vapor-phase fuel mole fraction and liquid fuel film thickness[J]. Applied Physics B, 2011, 102(2):345-355.
[24] 杨晓涛, 闫修平, 谢文强, 等. 基于可调谐激光吸收光谱技术(TLAS)的内燃机排放组分浓度测试技术研究[J]. 内燃机工程, 2017, 38(4):143-150. YANG X T, YAN X P, XIE W Q, et al. Research on the measurement of IC engine exhaust gas component by tunable laser absorption spectroscopy technique[J]. Chinese Internal Combustion Engine Engineering, 2017, 38(4):143-150.
[25] MONZA A A, VLACHOS N A, PARAS S A, et al. Measurements of liquid film thickness using light absorption method[J]. Experiments in Fluids, 2000, 28(4):355-359.
[26] 石建伟, 吴威, 杨荟楠, 等. 激光光谱法尿素水溶液液膜多参数同步测量[J]. 北京航空航天大学学报, 2017, 43(2):360-365.SHI J W, WU W, YANG H N, et al. Simultaneous measurement of multi-parameter of liquid film for urea-water-solution by laser spectroscopy[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(2):360-365.
[27] 杨荟楠, 郭晓龙, 杨斌, 等. 激光光谱法同步测量尿素水溶液液膜厚度与浓度[J]. 化工学报, 2015, 66(2):759-763. YANG H N, GUO X L, YANG B, et al. Simultaneous measurement of film thickness and concentration of urea-water solution by laser spectroscopy[J]. CIESC Journal, 2015, 66(2):759-763.
[28] 杨斌, 齐宗满, 杨荟楠, 等. 基于TDLAS的燃烧流场速度测量方法[J]. 燃烧科学与技术, 2015, (6):516-520. YANG B, QI Z M, YANG H N, et al. Velocity measurement method based on TDLAS for combustion flow[J]. Journal of Combustion Science and Technology, 2015, (6):516-520.
[29] YANG H, GRESZIK D, DREIER T, et al. Simultaneous measurement of liquid water film thickness and vapor temperature using nearinfrared tunable diode laser spectroscopy[J]. Applied Physics B, 2010, 99(3):385-390.
[30] 刘畅, 田井辉, 丁家琦, 等. 单波长溶液液膜厚度测量方法[J]. 中南大学学报(自然科学版), 2016, (1):286-289. LIU C, TIAN J H, DING J Q, et al. Film thickness measurement of aqueous solution based on single diode laser absorption spectroscopy[J]. Journal of Central South University(Science and Technology), 2016, (1):286-289.

[1] ZHANG Yating, ZHANG Kaibo, JIA Kaili, HE Xinfu, LIU Guoyang, WANG Wei, ZHANG Yongling, QIU Jieshan. Preparation and lithium storage properties of flexible self-standing PDDA-Si/G nanocomposite film [J]. CIESC Journal, 2019, 70(3): 1144-1151.
[2] CHANG Jingcai, WANG Xiang, WANG Peng, CUI Lin, LI Jun, ZHANG Xin, MA Chunyuan. Evaporation characteristics of water film over collecting electrode in high-voltage electrical field [J]. CIESC Journal, 2019, 70(3): 865-873.
[3] GENG Chen, GUO Yajun, FENG Song, BI Qincheng. Density measurements of endothermic hydrocarbon fuel using random temperature signal cross-correlation [J]. CIESC Journal, 2019, 70(1): 24-31.
[4] XIANG Wenjun, ZHU Zhaoju, LIU Dan, ZHOU Lüshan. Molecular dynamics simulations core-shell self-assembly from amphiphilic polymer and hydrophobic nanoparticle [J]. CIESC Journal, 2019, 70(1): 345-354.
[5] YAN Hongzhi, HU Bin, WANG Ruzhu. Modeling and optimization of water-to-water falling film evaporator [J]. CIESC Journal, 2018, 69(S2): 68-75.
[6] XIE Yanqi, ZHU Kai, WANG Yabo. Effects of freezing conditions on cryopreservation of plant cells [J]. CIESC Journal, 2018, 69(S2): 200-204.
[7] LI Zhaoning, ZHAO Yanjie, TANG Yupeng. Adhesion characteristics of urea aqueous solution in solidification and crystallization [J]. CIESC Journal, 2018, 69(S2): 232-239.
[8] LI Hongru, CHEN Yan, CHENG Xu, DU Wenjing, YI Baokui, XIN Gongming. Capillary evaporation in tubes with different diameters [J]. CIESC Journal, 2018, 69(S1): 43-47.
[9] TANG Erjun, YAO Mengmeng, GUO Xiaofeng, WANG Ruihong, LIU Shaojie, GAO Hao. Film formation for aqueous epoxy acrylate latex coatings [J]. CIESC Journal, 2018, 69(S1): 143-147.
[10] YANG Wenjing, HAO Muming, CAO Hengchao, YUAN Junma, LI Han. Analysis of cavitation of downstream pumping spiral groove liquid film seal considering mass conserving boundary condition [J]. CIESC Journal, 2018, 69(9): 3932-3943.
[11] LI Weihao, ZHANG Xiaosong. Experimental research on a new type of frost-free air source heat pump system [J]. CIESC Journal, 2018, 69(9): 3975-3982.
[12] ZHANG Ying, ZHANG Shi, HE Maogang. Determination of mutual diffusion coefficient for binary solution using digital holographic interferometry [J]. CIESC Journal, 2018, 69(9): 3774-3782.
[13] CHEN Zidan, LUO Huilong, LIU Jinchun, CAO Zhenguo, ZHAO Xinshuai, YANG Wubiao. Analysis of heating performance of CO2 air-source heat pump in cold region [J]. CIESC Journal, 2018, 69(9): 4030-4036.
[14] YANG Qing, YANG Yubing, LI Jianmin, FENG Hongli, ZHOU Xueyang, LIU Xiuhong. Partial nitrification coupled anaerobic ammonia oxidation process to treat low C/N domestic sewage [J]. CIESC Journal, 2018, 69(8): 3635-3642.
[15] SUN Yang, YANG Daoye, LIU Dazhen, FENG Wenxuan, GU Muyang. Three-dimensional electrical capacitance tomography in rectangular spouted bed [J]. CIESC Journal, 2018, 69(8): 3383-3389.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!