CIESC Journal ›› 2018, Vol. 69 ›› Issue (5): 2127-2136.doi: 10.11949/j.issn.0438-1157.20171199

Previous Articles     Next Articles

Scale/corrosion inhibition and biodegradation of lysine modified polyaspartic acid

LIU Xinhua1, ZHOU Kun2, HAN Jie3, CHEN Zhihui4, LI Huijuan1   

  1. 1. Department of Chemistry, Tangshan Normal University, Tangshan 063000, Hebei, China;
    2. Hebei Chemical & Pharmaceutical College, Shijiazhuang 050026, Hebei, China;
    3. Tangshan Environmental Monitoring Center, Tangshan 063000, Hebei, China;
    4. College of Information Engineering, North China University of Science and Technology, Tangshan 063000, Hebei, China
  • Received:2017-08-30 Revised:2017-12-21 Online:2018-05-05 Published:2017-12-29
  • Supported by:

    supported by Hebei Iron and Steel Union Natural Fund (B2017209228) and the Doctoral Fund of Tangshan Normal University (2018A04).

Abstract:

A poly-aspartic acid derivative (Lys-PASP) was synthesized by ammonia reaction of L-lysine. FTIR characterization of the polymer demonstrated that Lys-PASP contained carboxyl and amide groups. SEM study indicated that adding Lys-PASP changed growth process and morphology of CaCO3 and CaSO4 crystals such that loose and fine calcium scale could be formed, which prevented developing dense-structured calcium scale and achieved a good scale inhibition. The addition of Lys-PASP also caused lattice distortion of calcium scale crystals and inhibited surface pitting corrosion. Besides, a layer of adsorption film on surface by chemical and physical adsorption assisted to achieve a better corrosion inhibition effect. The scale inhibition efficiency of Lys-PASP graft copolymer to CaCO3 and CaSO4 was closely related to Lys-PASP dosage, Ca2+ concentration and system temperature. At 10 mg·L-1Lys-PASP, the CaCO3 scale inhibition efficiency was 98.7% and that of CaSO4 was close to 100%. Lys-PASP exhibited good scale inhibition at temperature 80℃and Ca2+ concentration at 500 mg·L-1 and 7000 mg·L-1. Furthermore, gravimetric study showed that corrosion inhibition efficiency of Lys-PASP is 13% higher than that of PASP when both Lys-PASP and PASP were 150 mg·L-1. Lys-PASP polymer is easily biodegradable per oscillating incubator study.

Key words: polymer, scale inhibition performance, corrosion inhibition performance, degradation, adsorption

CLC Number: 

  • TQ085+.4

[1] 余嵘, 逯佩宁, 严程, 等. AA/MA/HEMA三元共聚物的阻垢与生物降解性能[J]. 环境工程学报, 2016, 10 (10):5549-5554. YU R, LU P N, YAN C, et al. Scale inhibition of AA/MA/HEMA terpolymer and biodegradation performance[J]. Chinese Journal of Environmental Engineering, 2016, 10(10):5549-5554.
[2] 白莎, 向燊, 朱莹. 绿色阻垢剂的研究进展和发展方向[J]. 广东化工, 2014, 41(16):85-88. BAI S, XIANG S, ZHU Y. Progress of research and directions on green scale inhibitor[J]. Guangdong Chemical Industry, 2014, 41(16):85-88.
[3] 胡百顺, 郭学辉, 王康. 绿色缓蚀阻垢剂的研究及应用进展[J]. 工业水处理, 2013, 33(5):9-12. HU B S, GUO X H, WANG K. Progress in the research and application of green corrosion and scale inhibitors[J]. Industrial Water Treatment, 2013, 33(5):9-12.
[4] 胡晓静, 刘振法, 武秀丽, 等. 环境友好型缓蚀阻垢剂的研制及性能研究[J]. 水处理技术, 2010, 36(3):38-41. HU X J, LIU Z F, WU X L, et al. Development and performances of environmentally friendly corrosion and scale inhibitor[J]. Technology of Water Treatment, 2010, 36(3):38-41.
[5] 孙晓丹, 陈爱芹, 徐飞. 循环水用无磷缓蚀阻垢剂的研究与应用[J]. 当代化工, 2014, 43(7):1290-1292. SUN X D, CHEN A Q, XU F. Research and application of non-phosphorus scale-corrosion inhibitor for circulating water system[J]. Contemporary Chemical Industry, 2014, 43(7):1290-1292.
[6] SENTHILMURUGAN B, GHOSH B, SANKER S. High performance maleic acid based oil well scale inhibitors-development and comparative evaluation[J]. Journal of Industrial and Engineering Chemistry, 2011, 17(3):415-420
[7] LIU D, DONG W B, LI F T, et al. Comparative performance of poly-epoxysuccinic acid and poly-aspartic acid on scaling inhibition by static and rapid controlled precipitation methods[J]. Desalination, 2012, 304:1-10.
[8] ZHANG L H, ZHU Z L. Chromium extraction from sewage sludge using polyepoxysuccinic acid[J]. Pedosphere, 2012, 22(1):131-136.
[9] GAO Y H, LIU Z F, ZHANG L H, et al. Synthesis, characterization and scale inhibition of biodegradable poly-aspartic acid derivative[C]//The 3rd International Conference on Bioinformatics and Biomedical Engineering (i CBBE2009), 2009.
[10] 高玉华, 王延吉, 刘振法, 等. 聚天冬氨酸共聚物的合成、表征及性能研究[J]. 高校化学工程学报, 2010, 24(2):301-306. GAO Y H, WANG Y J, LIU Z F, et al. Synthesis, characterization and performance of copolymer of poly-aspartic acid[J]. Journal of Chemical Engineering of Chinese Universities, 2010, 24(2):301-306.
[11] GAO Y H, FAN L H, LIAM W, et al. Synthesis of poly-aspartic acid derivative and evaluation of its corrosion and scale inhibition performance in seawater utilization[J]. Desalination, 2015, 365:220-226.
[12] XU Y, ZHAO L L, WANG L N. Synthesis of poly-aspartic acid-melamine grafted copolymer and evaluation of its scale inhibition performance and dispersion capacity for ferric oxide[J]. Desalination, 2012, 286(2):285-289.
[13] ZHANG B, ZHOU D P, LV X G, et al., Synthesis of poly-aspartic acid/3-amino-1H-1,2,4-triazole-5-carboxylic acid hydrate graft copolymer and evaluation of its corrosion inhibition and scale inhibition performance[J]. Desalination, 2013, 327:32-38.
[14] GU X X, QIU F X, XIN Z, et al, Preparation and application of polymers as inhibitors for calcium carbonate and calcium phosphate scales[J]. Int. J. Poly. Mater. Poly. Biomater., 2012, 62:323-329.
[15] CHEN J X, XU L H, HAN J, et al. Synthesis of modified poly-aspartic acid and evaluation of its scale inhibition and dispersion capacity[J]. Desalination 2015, 358:42-48.
[16] 柳鑫华, 王文静, 丁云飞, 等. 缓蚀阻垢剂聚天冬氨酸衍生物合成条件的探究[J]. 工业水处理, 2014, 34(1):61-64. LIU X H, WANG W J, DING Y F, et al. Study on the synthesis conditions of scale inhibitor poly-aspartic acid derivative[J]. Industrial Water Treatment, 2014, 34(1):61-64.
[17] 王爱军, 靳文婷, 范文革, 等. 水质阻垢剂聚天冬氨酸分子量的测定[J]. 山东化工, 2015, 44(4):64-66. WANG A J, JIN W T, FAN W G, et al. A method for determination molecular weight of poly-aspartic acid[J]. Shandong Chemical Industry, 2015, 44(4):64-66.
[18] 虞志光. 高聚物分子量及其分布的测定[M].上海:上海科学技术出版社, 1984:37. YU Z G. The Determination of Polymer Molecular Weight and Its Distribution[M]. Shanghai:Shanghai Science and Technology Press, 1984:37.
[19] 朱谦雅, 刘晓艳, 毛国成, 等. 聚天冬氨酸作为油田阻垢剂的研究进展[J]. 油气田环境保护, 2006, 16(3):42-45. ZHU Q Y, LIU X Y, MAO G C, et al. Research progress of poly-aspartic acid taken as scale inhibitor in oilfields[J]. Enviromental Protection of Oil & Gas Fields. 2006, 16(3):42-45.
[20] 高玉华. 聚天冬氨酸衍生物的合成及其性能研究[D]. 天津:河北工业大学, 2010. GAO Y H. Synthesis and performance research of poly-aspartic acid derivative[D]. Tianjin:Hebei University of Technology, 2010.
[21] 赵彦生, 李一清, 彭璐, 等. 改性聚天冬氨酸共聚物的合成及其阻硫酸钙垢性能的研究[J]. 化学与生物工程, 2011, 28(3):81-84. ZHAO Y S, LI Y Q, PENG L, et al. Synthesis of modified poly-aspartic acid copolymer and its scale inhibiting performance to calcium sulfate[J]. Chemistry & Bioengineering, 2011, 28(3):81-84.
[22] GAO Y H, WANG Y J, LIU Z F, et al. Synthesis, scale and corrosion inhibition of modified poly-aspartic acid[J]. Asian Journal of Chemistry, 2010, 22(2):1495-1502.
[23] GAO Y H, LIU Z F, ZHANG L H, et al. Synthesis and performance research of biodegradable modified polyaspartic acid[J]. Environmental Pollution and Public Health (EPPH2010), 2010, DOI:10.1109/ICBBE.2010.5516477.
[24] 张华. 现代有机波谱分析[M]. 北京:化学工业出版社, 2005:266-278. ZHANG H. Spectral Analysis of Modern Organic Compounds[M]. Beijing:Chemical Industry Press, 2005:266-278.
[25] SILVERSTEIN R M, WEBSTER F X, KIEMLE D J. Spectrometric Identification of Organic Compounds[M]. American:Wiley, 2007:203-224
[26] 王昕. 天冬氨酸-赖氨酸共聚物的微波辐射合成及阻垢性能研究[D]. 保定:华北电力大学, 2013. WANG X. Microwave radiation and scale ihnibiting performance of aspartic acid/lysine[D]. Baoding:North China Electric Power University, 2013.
[27] 王谦, 田玉平, 石澍晨, 等. 聚天冬氨酸/L-肌肽接枝共聚物的制备及其阻垢性能[J]. 石油化工, 2017, 46 (1):103-109. WANG Q, TIAN Y P, SHI S C, et al. Synthesis and scale inhibition efficiency of poly-aspartic acid/L-carnosine graft copolymer[J]. Petrochemical Technology, 2017, 46(1):103-109.
[28] 朱凌, 吴一弦, 王玲玲, 等. 天冬氨酸与谷氨酸共聚反应研究[J].北京化工大学学报, 2007, 34(1):49-52. ZHU L, WU Y X, WANG L L, et al. The copoly-condensation of L-aspartic acid and L-glutamic acid[J]. Journal of Beijing University of Chemical Technology, 2007, 34(1):49-52.
[29] FENG J Y, GAO L J, WEN R Z, et al, Fluorescent poly-aspartic acid with an enhanced inhibition performance against calcium phosphate[J]. Desalination, 2014, 345:72-76.
[30] 牟静, 李小瑞, 费贵强, 等. MA/AA/AM/AMPS四元共聚物的合成及其对硫酸钙和碳酸钙的阻垢性能[J]. 功能材料, 2013, 44(2):182-186. MOU J, LI X R, FEI G Q, et al. MA/AA/AM/AMPS quadripolymer inhibitor for sulphate and carbonate scales[J]. Journal of Functional Materials, 2013, 44(2):182-186.
[31] SHEN Z H, LI J S, XU K, et al. The effect of synthesized hydrolyzed poly-maleic anhydride (HPMA) on the crystal calcium carbonate[J]. Desalination, 2012, 284:238-244.
[32] SHAKKTHIVEL P, VASUDEVAN T. Acrylic acid-diphenylamine sulphonic acid copolymer threshold inhibitor for sulphate and carbonate scales in cooling water systems[J]. Desalination, 2006, 197:179-189.
[33] 柳鑫华, 王晓禹, 孙彩云, 等. 改性聚环氧琥珀酸衍生物的合成与阻垢性能[J]. 功能材料, 2013, 44(2):182-186. LIU X H, WANG X Y, SUN C Y, et al. Synthesis and scale inhibition performance of modified polyethylene succinic acid derivatives[J]. Journal of Functional Materials, 2013, 44(2):182-186.
[34] ROOMI Y A, HUSSEIN K F, RIAZI M R. Inhibition efficiencies of synthesized anhydride based polymers as scale control additives in petroleum production[J]. Journal of Petroleum Science and Engineering, 2012, 81:151-160.
[35] YANG Q F, LIU Y Q, GU A Z, et al, Investigation of calcium carbonate scaling inhibition and scale morphology by AFM[J]. J. Colloid Interface Sci., 2001, 240:608-621.
[36] OECD. 301B. Guideline for the Testing of Chemicals[M]. Paris:OECD Publishing, 2003.

[1] LIU Xiaofang, GUO Haiyan, ZHANG Shengnan, HUANG Liang. Influencing factors of denitrification of glycans and transformation characteristics of internal carbon sources [J]. CIESC Journal, 2019, 70(3): 1127-1134.
[2] GUO Wanwan, LI Ruyue, HUANG Jun. Copper catalyst supported on cross-linked phenanthroline for oxidative synthesis of 2,3,5-trimethyl-1,4-benzoquinone [J]. CIESC Journal, 2019, 70(3): 929-936.
[3] ZHANG Qian, LIU Xiangyang, CHEN Wang, WU Heng, XIAO Pengying, JI Fangying, LI Chen, NIAN Haiming. Preparation of a novel phosphorus removal filler and optimization of phosphate removal adsorption bed process [J]. CIESC Journal, 2019, 70(3): 1099-1110.
[4] SHENG Lisha, CHEN Zhenqian. Preparation and characterization of electrostatic-assisted porous liquid [J]. CIESC Journal, 2019, 70(3): 1163-1170.
[5] LI Xiaohang, LIU Yun, SU Yinjiao, TENG Yang, GUAN Yanjun, ZHANG Kai. Difference of fly ash characteristics from PC and CFB boilers and its effect on mercury adsorption capability [J]. CIESC Journal, 2019, 70(3): 1075-1082.
[6] ZHOU Qiang, HAO Junzheng, ZHU Linhua, WANG Hong, SI Tian, HE Yanping, SUN Yanlin. Foam phase preparation of porous poly(methyl methacrylate-co-butyl acrylate) microspheres in continuous process [J]. CIESC Journal, 2019, 70(3): 1208-1219.
[7] LI Long, GE Tianshu, WU Xuannan, DAI Yanjun. Adsorption properties of paper based silica gel adsorbents for benzene vapor [J]. CIESC Journal, 2019, 70(3): 951-959.
[8] ZHOU Yuhan, CHEN Xiaoyu, ZUO Cheng, GUO Qingjie, ZHAO Jun. Performances of waste paper cellulose/SiO2 composite aerogel [J]. CIESC Journal, 2019, 70(3): 1120-1126.
[9] WANG Lei, FANG Guiying, YANG Qingyuan. Performance of metal-organic frameworks for CO2 capture from large-scale computational screening [J]. CIESC Journal, 2019, 70(3): 1135-1143.
[10] LIANG Xinyuan, ZHANG Lei, LIU Linlin, DU Jian. Study on rubber polymer using computer-aided molecular design method based on molecular dynamics [J]. CIESC Journal, 2019, 70(2): 525-532.
[11] KANG Lixia, MA Chenlu, LIU Yongzhong. Operation optimization of modularized energy storage of retired batteries in hybrid power systems [J]. CIESC Journal, 2019, 70(2): 599-606.
[12] WANG Jiao, JIN Zhejunyu, DING Kaining, ZHAO Weiwei, PU Xiaohua, LI Zongxiao. Monte Carlo simulation of effect of MoO3 doping on Cu(Ⅱ) adsorption of silica [J]. CIESC Journal, 2019, 70(1): 355-359.
[13] CAI Jingtao, LI Daixi, LIU Baolin, LUAN Hansen, GUO Baisong, WEI Dongqing, WANG Hao. Controllable crystallization of urea (520) crystal plane by molecular simulation [J]. CIESC Journal, 2019, 70(1): 128-135.
[14] ZHOU Sunxi, ZHANG Xuelai, LIU Sheng, CHEN Qiyang, XU Xiaofeng, WANG Yinghui. Preparation and properties of decyl alcohol-palmitic acid/expanded graphite low temperature composite phase change material [J]. CIESC Journal, 2019, 70(1): 290-297.
[15] LEI Dehui, PENG Tongjiang, SUN Hongjuan, TANG Guangping, YANG Jianzhao, REN Yazhou, WANG Lili. Influence of reduction temperature of graphene oxide on cross sensitivity between humidity and formaldehyde [J]. CIESC Journal, 2019, 70(1): 309-318.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!