CIESC Journal ›› 2018, Vol. 69 ›› Issue (5): 2290-2298.doi: 10.11949/j.issn.0438-1157.20171153

Previous Articles     Next Articles

Preparation of TiO2/attapulgite composite photocatalyst by supercritical fluid drying method

ZHEN Wenyuan, LI Qing   

  1. School of Material Science and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
  • Received:2017-08-22 Revised:2017-10-13
  • Supported by:

    supported by Postgraduate Research and Innovation Project of BIFT(X2017-075).


TiO2/attapulgite nanocomposites were synthesized by the sol-gel method and supercritical fluid drying (SCFD) method using attapulgite as support and the aqueous solution of TiCl4 as raw material. The composition, morphological properties and catalytic performance of catalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy(XPS), and nitrogen adsorption-desorption measurements. The results show that there are no phase transformation from anatase to rutile about samples, the specific surface area of materials was increased. The adsorption property of attapulgite is excellent, the quantity of active adsorption sites on the surface of the materials were increased. TiO2 calcined at different temperatures are all anatase, they have smaller particle size and short clavite structure. The photoactivity of the samples under UV light was evaluated by photocatalytic degradation of methylene blue in aqueous solution. The maximum photodegradation rate was obtained in the samples calcined at 400℃, it can reach 98.4% under the irradiation of ultraviolet light for 3 h.

Key words: attapulgite, TiO2, SCFD, catalysis, nanomaterials, waste water

CLC Number: 

  • O643

[1] LIU F, FAN F T, LV Y C, et al. Research progress on photocatalytic degradation of organic pollutants by graphene/TiO2 composite materials[J]. Journal of Chemical Industry and Engineering, 2016, 67(5):1635.
[2] KWON S, FAN M H, COOPER A T, et al. Photocatalytic application of micro-and nano-TiO2 in environmental engineering[J]. Critical Reviews in Environmental Science and Technology, 2008, 38(3):197-226.
[3] DAGHRIR R, DROGUI P, ROBERT D. Modified TiO2 for environmental photocatalytic applications:a review[J]. Industrial & Engineering Chemistry Research, 2013, 52(10):3581-3599.
[4] FUJISHIMA A, ZHANG X. Titanium dioxide photocatalysis:present situation and future approaches[J]. Comptes Rendus Chimie, 2006, 9(5):750-760.
[5] 刘山虎, 许庆峰, 邢瑞敏, 等. 二氧化钛光催化技术应用于室内甲醛降解的研究进展[J]. 化学研究, 2016, 27(4):502-513. LIU S H, XU Q F, XING R M, et al. Advances in photocatalytic degradation of indoor formaldehyde based on the photocatalyst TiO2[J]. Chemical Research, 2016, 27(4):502-513.
[6] 蒋国民, 魏静, 晁成, 等. 细菌纤维素负载TiO2用于DDPN废水光催化降解研究[J]. 功能材料, 2014, 46(2):2023-2027. JIANG G M, WEI J, CHAO C, et al. Study of biotemplated preparation of TiO2 nanoparticles/bacterial cellulose hybrid nanofiber for degradation of DDNP wastewater[J]. Journal of Functional Materials, 2014, 46(2):2023-2027.
[7] ACHAMO T, YADAV O P. Removal of 4-nitrophenol from water using Ag-N-P-tridoped TiO2 by photocatalytic oxidation technique[J]. Analytical Chemistry Insights, 2016, 11(11):29.
[8] 那平, 张海燕. 超声波及压力处理的TiO2柱撑蒙脱土的制备与光催化性能[J]. 化工学报, 2006, 57(5):1242-1246. NA P, ZHANG H Y. Preparation and photocatalytic performance of TiO2 pillared montmorillonites treated by ultrasonic and pressure[J]. Journal of Chemical Industry and Engineering (China), 2006, 57(5):1244-1246.
[9] UMEBAYASHI T, YAMAKI T, ITOH H, et al. Band gap narrowing of titanium dioxide by sulfur doping[J]. Applied Physics Letters, 2002, 81(3):454-456.
[10] 翟友存, 冯炜, 邹克华, 等. TiO2光催化剂的掺杂改性和固定化研究[J]. 环境科学与管理, 2013, 38(1):99-103. ZHAI Y C, FENG W, ZOU K H, et al. Study on doping modification and immobilization of TiO2 photocatalyst[J]. Environmental Science and Management, 2013, 38(1):99-111.
[11] 傅剑锋, 季民, 金洛楠, 等. TiO2光催化降解水中天然有机物富里酸的动力学模型[J]. 化工学报, 2005, 56(6):1009-1014. FU J F, JI M, JIN L N, et al. Kinetic model for fulvic acid degradation by TiO2-photocatalysis in water[J]. Journal of Chemical Industry and Engineering(China), 2005, 56(6):1009-1014.
[12] 张昌远, 黄祥平, 万兰芳, 等. 高比表面积TiO2纳米颗粒的制备及光催化性能研究[J]. 三峡大学学报, 2011, 33(3):110. ZHANG C Y, HUANG X P, WAN L F, et al. Synthesis of nanometer sized TiO2 with large surface area and its photocatalytic activities[J]. Journal of China Three Gorges University, 2011, 33(3):110.
[13] 孙振世, 陈英旭, 柯强, 等. TiO2/膨润土纳米复合光催化剂降解偶氮染料的研究[J]. 环境科学学报, 2003, 23(1):129-133. SUN Z S, CHEN Y X, KE Q, et al. Photocatalytic degradation of azo dye by TiO2/bentonite nanocomposite[J]. Acta Scientiae Circumstantiae, 2003, 23(1):129-133.
[14] 陶丽琴, 赵义侠, 康卫民, 等. 聚四氟乙烯超细纤维负载二氧化钛光催化性能[J]. 硅酸盐学报, 2016, 44(1):89-94. TAO L Q, ZHAO Y X, KANG W M, et al. Preparation of titanium dioxide loaded on polytetrafluoroethylene superfine-fiber and its photocatalytic performance[J]. Journal of the Chinese Ceramic Society, 2016, 44(1):89-94.
[15] STRINI A, ROVIELLO G, RICCIOTTI L, et al. TiO?-based photocatalytic geopolymers for nitric oxide degradation[J]. Materials, 2016, 9(7):513.
[16] KEIHAN A H, HOSSEINZADEH R, FARHADIAN M, et al. Solvothermal preparation of Ag nanoparticle and graphene co-loaded TiO2 for the photocatalytic degradation of paraoxon pesticide under visible light irradiation[J]. RSC Advances, 2016, 6:83673-83687.
[17] 霍成立. 凹凸棒基复合功能材料的应用基础研究[D]. 长沙:中南大学, 2014. HUO C L. Fundamental research on palygorskite-based functional composites[D]. Changsha:Central South University, 2014.
[18] 陈天虎. 苏皖凹凸棒石粘土纳米尺度矿物学及地球化学[D]. 合肥:合肥工业大学, 2003. CHEN T H. Nanometer scale mineralogy and geochemistry of palygorskite clays in the border of Jiangsu and Anhui province[D]. Hefei:Hefei University of Technology, 2003.
[19] TANG J, MU B, WANG W, et al. Fabrication of manganese dioxide/carbon/attapulgite composites derived from spent bleaching earth for adsorption of Pb(Ⅱ) and brilliant green[J]. RSC Advances, 2016, 6(43):36534-36543.
[20] XIANG L, PAN Y C, ZENG G F, et al. Preparation of poly (ether-block-amide)/attapulgite mixed matrix membranes for CO2/N2 separation[J]. Journal of Membrane Science, 2016, 500:66-75.
[21] LUO M B, LIN H L, SONG J R. Study on adsorption properties of attapulgite clay to uranium in waste water[C]//The International Conference on Bioinformatics and Biomedical Engineering. IEEE, 2008:3127-3130.
[22] 胡春, 王怡中. 凹凸棒负载TiO2对偶氮染料和纺织废水光催化脱污[J]. 环境科学学报, 2001, 21(1):123-125. HU C, WANG Y Z. TiO2/attapulgite photocatalyst for solar detoxification of dyes and textile wastewater[J]. Acta Scientiae Circumstantiae, 2001, 21(1):123-125.
[23] 霍鹏, 张青, 张滨, 等. 超临界流体萃取技术的应用与发展[J]. 河北化工, 2010, 33(3):25-26. HUO P, ZHANG Q, ZHANG B, et al. The application and development of supercritical fluid extraction technology[J]. Hebei Chemical Engineering and Industry, 2010, 33(3):25-26.
[24] 胡盛, 周艳红, 田大听, 等. 热处理对盱眙凹凸棒石结构和形貌的影响[J]. 化工新型材料, 2013, 41(6):143-145. HU S, ZHOU Y H, TIAN D T, et al. Effect of heat treatment on structure and morphology of attapulgite in Xuyi[J]. New Chemical Materials, 2013, 41(6):143-145.
[25] CHEN Q H, LIU H L, XIN Y J, et al. TiO2 nanobelts-effect of calcinations temperature on optical, photoelectrochemical and photocatalytic properties[J]. Electrochimica Acta, 2013, 111(4):284-291.
[26] HE F, MA F, LI J L, et al. Effect of calcinations temperature on the structural properties and photocatalytic activities of solvothermal synthesized TiO2 hollow nanoparticles[J]. Ceramics International, 2014, 40(5):6441-6446.
[27] WANG C C, YING J Y. Sol-gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystal[J]. Chemistry of Materials, 1999, 11(11):3113-3120.
[28] 林发蓉, 何代平, 蔡铎昌, 等. 超临界干燥法制备的锐钛矿TiO2纳米晶的性能研究[J]. 西华师范大学学报(自然科学版), 2007, 28(1):49-52. LIN F R, HE D P, CAI D C, et al. Study on properties of anatase TiO2 nanocrystallites prepared by supercritical drying[J]. Journal of China West Normal University (Natural Sciences), 2007, 28(1):49-52.
[29] MA W, LU Z, ZHANG M. Investigation of structural transformations in nanophase titanium dioxide by Raman spectroscopy[J]. Applied Physics A:Material Science and Processing, 1998, 66(6):621-627.
[30] CHEN Q F, JIANG D, SHI W M, et al. Visible-light-activated Ce-Si co-doped TiO2 photocatalyst[J]. Applied Surface Science, 2009, 255(18):7918-7924.
[31] GOTTLIEB A, SHAW C, SMITH A, et al. The toxicity of textile reactive azo dyes after hydrolysis and decolourisation[J]. Journal of Biotechnology, 2003, 101(1):49-56.
[32] 刘艾芹, 闫永胜, 李春香, 等. 高纯超微细凹凸棒土的制备及应用研究[J]. 无机盐工业, 2007, 39(12):19-22. LIU A Q, YAN Y S, LI C X, et al. Research on preparation and application of ultrafine high-purity attapulgite[J]. Inorganic Chemicals Industry, 2007, 39(12):19-22.
[33] 郑建东, 常彬彬, 陈涛涛, 等. 凹凸棒土高温改性的研究[J]. 应用化工, 2010, 39(12):1835-1842. ZHENG J D, CHANG B B, CHEN T T, et al. Study on the high temperature modification of attapulgite[J]. Applied Chemical Industry, 2010, 39(12):1835-1842.
[34] XU Z B, KONG X J, YU J L. Study on TiO2/diatomite composite photocatalyst[J]. Chinese Journal of Rare Metals, 2007, 31(1):92-96.
[35] 王成, 操家顺, 谢坤, 等. 凹凸棒土改性及其在水处理中的应用研究进展[J]. 应用化工, 2016, 45(8):1575-1578. WANG C, CAO J S, XIE K, et al. Research progress of the modification of attapulgite and its application in water treatment[J]. Applied Chemical Industry, 2016, 45(8):1575-1578.
[36] 李春全, 艾伟东, 孙志明, 等. V-TiO2/凹凸棒石复合光催化材料的制备与研究[J]. 人工晶体学报, 2016, 45(3):654-660. LI C Q, AI W D, SUN Z M, et al. Preparation and research of V-TiO2/palygorskite composite photocatalytic material[J]. Journal of Synthetic Crystals, 2016, 45(3):654-660.
[37] 仰榴青. 国产凹凸棒土的研究[J]. 江苏理工大学学报, 1995, 16(1):55-60. YANG L Q. Study on Chinese attapulgites[J]. Journal of Jiangsu University of Science and Technology, 1995, 16(1):55-60.
[38] SING K S W, EVERETT D H, HUAL R A W, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity[J]. Pure & Appl. Chem., 1982, 57(4):603-619.
[39] 谢晶晶. 热处理凹凸棒石结构、物性演化及其对磷的吸附作用[D]. 合肥:合肥工业大学, 2013. XIE J J. Structure and physical-chemistry property evolution of heat-treatment palygorskite as well as adsorption for phosphorus[D]. Hefei:Hefei University of Technology, 2013.
[40] 汪怀远, 于贞, 朱艳吉, 等. 水热法制备TiO2片晶及光催化性能[J]. 化工学报, 2011, 62(S2):97-101. WANG H Y, YU Z, ZHU Y J, et al. Hydrothermal synthesis of titanium dioxide flaky crystal and its photocatalytic performance[J]. CIESC Journal, 2011, 62(S2):97-101.
[41] 陈天虎, 王健, 庆承松, 等. 热处理对凹凸棒石结构、形貌和表面性质的影响[J]. 硅酸盐学报, 2006, 34(11):1406-1410. CHEN T H, WANG J, QING C S, et al. Effect of heat treatment on structure, morphology and surface properties of palygorskite[J]. Journal of the Chinese Ceramic Society, 2006, 34(11):1406-1410.
[42] YAMAKI T, UMEBAYASHI T, SUMITA T, et al. Fluorine-doping in titanium dioxide by ion implantation technique[J]. Nuclear Instrument and Methods in Physics Research Section B, 2003, 206(3):254-258.
[43] HUANG D G, LIAO S J, ZHOU W B, et al. Synthesis of samarium and nitrogen co-doped TiO2 by modified hydrothermal method and its photocatalytic performance for the degradation of 4-chlorophenol[J]. Journal of Physics and Chemistry of Solids, 2009, 70(5):853-859.
[44] JING L Q, XU Z L, SUN X J, CAI W M. The surface properties and photocatalytic activities of ZnO ultrafine particles[J]. Applied Surface Science, 2001, 180(3/4):308-314.
[45] LINSEBIGLER A L, LU G Q, YATES J T, et al. Photocatalysis on TiO2 surfaces:principles, mechanisms, and selected results[J]. Chemical Reviews, 1995, 95(3):735-758.
[46] DENG L J, XIE Y, ZHANG G K. Synthesis of C-Cl-codoped titania/attapulgite composite with enhanced visible-light photocatalytic activity[J]. Chinese Journal of Catalysis, 2017, 38(2):379-388.
[47] UCHIDA H, SASAKI T, OGURA K. Dark catalytic reduction of CO2 over prussion blue deposited TiO2 and the photo-reactivation of the catalyst[J]. Journal of Molecular Catalysis, 1994, 93(3):269-277.
[48] SUN Z M, HU Z B, YAN Y, et al. Effect of preparation conditions on the characteristics and photocatalytic activity of TiO2/purified diatomite composite photocatalysts[J]. Applied Surface Science, 2014, 314(10):251-259.
[49] D'ELIA D, BEAUGER C, HOCHEPIED J F, et al. Impact of three different TiO2 morphologies on hydrogen evolution by methanol assisted water splitting:nanoparticles, nanotubes and aerogels[J]. International Journal of Hydrogen Energy, 2011, 36(22):14360-14373.

[1] DUAN Yunbiao, XU Cunying, WANG Xiang, LIU Hai, HUANG Mengting. Synthesis of Fe3+-doped ZnO nanostructures by antisolvent precipitation method and their visible photocatalytic activity [J]. CIESC Journal, 2019, 70(3): 1198-1207.
[2] LIANG Tianshui, WANG Zongying, GAO Kun, LI Runwan, WANG Zheng, ZHONG Wei, ZHAO Jun. Analysis of fire suppression effectiveness of ultra-fine water mist containing iron compounds additives in cup burner [J]. CIESC Journal, 2019, 70(3): 1236-1242.
[3] BAI Junren, YI Jun, LI Qian, WU Ling, CHEN Xuemei. Multi-objective optimization of QPSO for thereaction-regeneration process [J]. CIESC Journal, 2019, 70(2): 750-756.
[4] ZHU Yi, WANG Hao, CHEN Liping, GUO Zichao, HE Zhongqi, CHEN Wanghua. Calculate time to maximum rate under adiabatic condition by numerical calculation method [J]. CIESC Journal, 2019, 70(1): 379-387.
[5] CHEN Chen, WANG Ying, LIU Hong, CHEN Yan, YAO Mingdong, XIAO Wenhai. Exploring the key structural properties affecting the function of multi-step phytoene dehydrogenase CrtI [J]. CIESC Journal, 2019, 70(1): 189-198.
[6] PAN Lulu, WU Danjing, LIU Weiping. Electrical performance of MFC-MEC coupling system and treatment of heavy metal wastewater containing cadmium [J]. CIESC Journal, 2019, 70(1): 242-250.
[7] LIU Hui'e, HUANG Yangfan, MA Yanbing, CHEN Shuang. Saturated adsorption capacities of graphene aerogels on organics [J]. CIESC Journal, 2019, 70(1): 280-289.
[8] XIE Huaqing, ZHANG Weidong, LIN Heyong, YU Qingbo. Hydrogen production via sorption-enhanced steam reforming of tar [J]. CIESC Journal, 2018, 69(S2): 466-472.
[9] CHEN Xiuying, XIE Huilin, HU Wenbin, ZHOU Xinhua, ZHOU Hongjun, SHU Xugang. Preparation and characterization of MCM-41 supported Pt-Al catalysts [J]. CIESC Journal, 2018, 69(S1): 72-79.
[10] JIA Shangning, CHANG Juanjuan, LI Ningbo, QIAO Jie. Synthesis of magnetic nanoparticles with core-shell structure and its drug loading properties [J]. CIESC Journal, 2018, 69(S1): 170-175.
[11] NIE Shidong, LI Jiangtao, ZHANG Zhiying, LIU Yun, LIU Chunyan. Synthesis and properties of hierarchical structure silver micro-nanocrystals [J]. CIESC Journal, 2018, 69(9): 4090-4096.
[12] SONG Dihui, AN Luyang, ZHANG Litao, ZHANG Yafeng, XU Xinwei, WANG Yunan, WEI Huangzhao. Optimization of electrochemical coupling system process for coking waste water pretreatment by response surface method [J]. CIESC Journal, 2018, 69(9): 4001-4011.
[13] HE Meizhi, YANG Luwei, ZHANG Zhentao, YANG Junling. Preparation and properties of nanomaterials/MA hybrid phase change thermal energy storage materials [J]. CIESC Journal, 2018, 69(9): 4097-4105.
[14] GENG Lili, YANG Kaixu, ZHANG Nuowei, CHEN Binghui. Synergetic effect of Ru and Cu on catalytic wet oxidation of ammonia-wastewater [J]. CIESC Journal, 2018, 69(9): 3869-3878.
[15] CUI Jiandong, CUI Zhaohui, SU Zhiguo, ZHENG Chunyang, MA Guanghui, ZHANG Songping. Bioactive coating prepared by bio-3D printing of castor oil-based waterborne polyurethane mixed with carbonic anhydrase [J]. CIESC Journal, 2018, 69(8): 3577-3584.
Full text



No Suggested Reading articles found!