CIESC Journal ›› 2018, Vol. 69 ›› Issue (5): 2242-2249.doi: 10.11949/j.issn.0438-1157.20171073

Previous Articles     Next Articles

Analysis of synergistic effects of process factors on energy distribution in MFCs

CHENG Ben'ai1,2, JIA Hui1,2, YANG Guang3, LIU Wenbin1,2, ZHANG Hongwei1,2,3, WANG Jie1,2   

  1. 1. State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China;
    2. School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, China;
    3. School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
  • Received:2017-08-09 Revised:2017-09-19 Online:2018-05-05 Published:2017-10-16
  • Supported by:

    supported by the National Natural Science Foundation General Projects of China (51578375, 51378349).


Microbial fuel cell (MFC) is a novel energy conversion device which is able to convert chemical energy into electrical energy. In MFCs, organic matter was degraded in ways of microbial metabolism and bioelectricity conversion. According to the different allocation requirements of energy in the process of operation, the energy flow could be controlled by changing the operation parameters. In this study, MFCs factors, such as pH, organic load, dissolved oxygen, electrical conductance and external resistance, were applied by orthogonal design experiments to optimize parameters for regulation of energy flow. The results showed that the highest efficiency of electric energy conversion was 8.74% and the loads and resistances were significant factors. On the other hand, the highest efficiency of biological metabolism was 66.03% and the load and pH were significant factors. Therefore, when the system was under the same load condition, if the MFC were used as an electrical conversion units, the external resistances should be controlled, while if organic matter conversion capacity was required to be improved, the pH should be controlled.

Key words: microbial fuel cell, organic compounds, process control, degradation, energy distribution, process factors

CLC Number: 

  • X703.1

[1] BULLEN R A, ARNOT T C, LAKEMAN J B, et al. Biofuel cells and their development[J]. Biosensors and Bioelectronics, 2006, 21(11):2015-2045.
[2] 连静, 冯雅丽, 李浩然, 等. 微生物燃料电池的研究进展[J]. 过程工程学报, 2006, 6(2):334-338. LIAN J, FENG Y L, LI H R, et al. Progress in research on microbial fuel cells[J]. The Chinese Journal of Process Engineering, 2006, 6(2):334-338.
[3] 丁为俊, 刘鹏, 刘伟凤, 等. 循环伏安扫描对微生物燃料电池启动和产电性能的影响[J]. 化工学报, 2016, 68(3):1205-1210. DING W J, LIU P, LIU W F, et al. Effect of cyclic voltammetry process on start-up and electricity performance of microbial fuel cells[J]. CIESC Journal, 2016, 68(3):1205-1210.
[4] 顾冬燕, 贾红华, 伍元东, 等. 利用微生物燃料电池同步降解沼液和三苯基氯化锡[J]. 化工学报, 2016, 67(5):2056-2063. GU D Y, JIA H H, WU Y D, et al. Synchronously degradation of biogas slurry and triphenyltin chloride in microbial fuel cell[J]. CIESC Journal, 2016, 67(5):2056-2063.
[5] LOGAN B E, HAMELERS B, ROZENDAL R, et al. Microbial fuel cells:methodology and technology[J]. Environmental Science and Technology, 2006, 40(17):5181-5192.
[6] 白立俊, 王许云, 何海波, 等. M-N-C阴极催化剂的制备及其在微生物燃料电池中的应用[J]. 化工学报, 2014, 65(4):1267-1272. BAI L J, WANG X Y, HE W B, et al. Preparation and characterization of M-N-C as cathode catalysts for microbial fuel cell[J]. CIESC Journal, 2014, 65(4):1267-1272.
[7] 付国楷, 张林防, 郭飞, 等. 榨菜废水MFC多周期运行产电性能及COD降解[J]. 中国环境科学, 2017, 37(4):1401-1407. FU G K, ZHANG L F, GUO F, et al. Electricity generation and COD removal of MFC using mustard tuber wastewater as substrate in multi-cycle running[J]. China Environmental Science, 2017, 37(4):1401-1407.
[8] 周宇, 刘中良, 侯俊先, 等. 化学氧化改性微生物燃料电池阳极[J]. 化工学报, 2015, 66(3):1172-1177. ZHOU Y, LIU Z L, HOU J X, et al. Microbial fuel cell anode modified by chemical oxidation[J]. CIESC Journal, 2015, 66(3):1172-1177.
[9] 霍庆城, 黄仁亮, 齐崴, 等. GO/PEDOT复合材料修饰阳极的制备及其在MFC中的应用[J]. 化工学报, 2016, 67(10):4406-4412. HUO Q C, HUANG R L, QI W, et al. Preparation and application of GO/PEDOT composite anode for MFC[J]. CIESC Journal, 2016, 67(10):4406-4412.
[10] 谢晴, 毛翔洲, 张玲, 等. 影响MFC产电能力及污水净化的非生物因素研究[J]. 化学学报, 2010, 68(19):1935-1941. XIE Q, MAO X Z, ZHANG L, et al. Study on effect of abiotic factors on electricity-generation and wastewater-treatment by microbial fuel cells[J]. Acta Chimica Sinica, 2010, 68(19):1935-1941.
[11] 张亮, 朱恂, 李俊, 等. 带有蛇形流场的微生物燃料电池串联堆性能特性[J]. 化工学报, 2013, 64(10):3797-3804. ZHANG L, ZHU X, LI J, et al. Performance of stacking microbial fuel cell in series with serpentine flow fields[J]. CIESC Journal, 2013, 64(10):3797-3804.
[12] 岳学海, 孔维芳, 王许云, 等. 厌氧流化床微生物燃料电池空气阴极研究[J]. 化工学报, 2013, 64(1):352-356. YUE X H, KONG W F, WANG X Y, et al. Research on air-cathode of anaerobic fluidized bed microbial fuel cell[J]. CIESC Journal, 2013, 64(1):352-356.
[13] 涂丽杏, 朱能武, 吴平霄, 等. 羧基化碳纳米管载铂催化剂对微生物燃料电池阴极氧还原性能的影响[J]. 环境科学, 2013, 34(4):1617-1622. TU L X, ZHU N W, WU P X, et al. Influence of carboxylic carbon nanotube supported platinum catalyst on cathode oxygen reduction performance of MFC[J]. Environmental Science, 2013, 34(4):1617-1622.
[14] 郑聪聪, 郭庆杰, 王许云, 等. MFC聚苯胺碳纳米管阳极电化学法制备及其性能[J]. 化工学报, 2012, 63(5):1599-1606. ZHENG C C, GUO Q J, WANG X Y, et al. Preparation and performance of graphite anode modified electrochemically by polyanline and carbon nanotubes for MFC[J]. CIESC Journal, 2012, 63(5):1599-1606.
[15] LIU Z D, LI H R. Effects of bio-and abio-factors on electricity production in a mediatorless microbial fuel cell[J]. Biochemical Engineering Journal, 2007, 36(3):209-214.
[16] 刘志丹, 连静, 李福生, 等. 利用微生物燃料电池研究Geobacter metallireducens 异化还原铁氧化物[J]. 化工学报, 2005, 56(12):2398-2403. LIU Z D, LIAN J, LI F S, et al. Microbial fuel cell used in study on dissimilatory ferric oxides reduction by Geobacter metallireducens[J]. Journal of Chemical Industry and Engineering(China), 2005, 56(12):2398-2403.
[17] 梁鹏, 王慧勇, 黄霞, 等. 环境因素对接种Shewanella baltica 的微生物燃料电池产电能力的影响[J]. 环境科学, 2009, 30(7):2148-2152. LIANG P, WANG H Y, HUANG X, et al. Influence of environmental factors on electricity production by microbial fuel cell inoculation Shewanella baltica[J]. Environmental Science, 2009, 30(7):2148-2152.
[18] 叶晔捷, 宋天顺, 徐源, 等. 微生物燃料电池产电的影响因素[J]. 过程工程学报, 2009, 9(3):526-530. YE Y J, SONG T S, XU Y, et al. Investigation on influential factors in electricity generation of microbial fuel cell[J]. The Chinese Journal of Process Engineering, 2009, 9(3):526-530.
[19] HE Z, HUANG Y, MANOHAR A K, et al. Effect of electrolyte pH on the rate of the anodic and cathodic reactions in an air-cathode microbial fuel cell[J]. Bioelectrochemistry, 2008, 74(1):78-82.
[20] NAM J Y, KIM H W, LIM K H, et al. Effects of organic loading rates on the continuous electricity generation from fermented wastewater using a single-chamber microbial fuel cell[J]. Bioresource Technology, 2010, 101(1):S33-S37.
[21] TAO Q, LUO J, ZHOU J, et al. Effect of dissolved oxygen on nitrogen and phosphorus removal and electricity production in microbial fuel cell[J]. Bioresource Technology, 2014, 164(7):402-407.
[22] QUAN X, QUAN Y, TAO K. Effect of anode aeration on the performance and microbial community of an air-cathode microbial fuel cell[J]. Chemical Engineering Journal, 2012, 210(7):150-156.
[23] LIU H, CHENG S, LOGAN B E. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration[J]. Environmental Science & Technology, 2005, 39(14):5488-5493.
[24] LI N, KAKARLA R, MIN B. Effect of influential factors on microbial growth and the correlation between current generation and biomass in an air cathode microbial fuel cell[J]. International Journal of Hydrogen Energy, 2016, 41(45):20606-20614.
[25] SUN M, ZHAI L F, LI W W, et al. Harvest and utilization of chemical energy in wastes by microbial fuel cells[J]. Chemical Society Reviews, 2016, 45(10):2847-2870.
[26] DONG H, YU H, WANG X, et al. A novel structure of scalable air-cathode without Nafion and Pt by rolling activated carbon and PTFE as catalyst layer in microbial fuel cells[J]. Water Research, 2012, 46(17):5777-5787.
[27] 李俊, 张亮, 朱恂, 等. 变负载工况下微生物燃料电池响应特性[J]. 化工学报, 2012, 63(S1):199-203. LI J, ZHANG L, ZHU X, et al. Response of a microbial cell to variable loads[J]. CIESC Journal, 2012, 63(S1):199-203.
[28] 袁浩然, 邓丽芳, 王亚琢, 等. 垃圾预处理条件对渗滤液组分及其微生物燃料电池处理效果的影响[J]. 化工学报, 2012, 63(10):3236-3242. YUAN H R, DENG L F, WANG Y Z, et al. Effects of pretreatment condition of MSW on components of leachate and result of MFC treatment[J]. CIESC Journal, 2012, 63(10):3236-3242.
[29] WANG J, BI F, NGO H H, et al. Evaluation of energy-distribution of a hybrid microbial fuel cell-membrane bioreactor (MFC-MBR) for cost-effective wastewater treatment[J]. Bioresource Technology, 2016, 200(1):420-425.
[30] SU X, TIAN Y, SUN Z, et al. Performance of a combined system of microbial fuel cell and membrane bioreactor:wastewater treatment, sludge reduction, energy recovery and membrane fouling[J]. Biosensors and Bioelectronics, 2013, 49(22):92-98.
[31] 张培远. 微生物燃料电池能量特性研究[D]. 北京:北京工业大学, 2011. ZHANG P Y. A theoretical and experimental study of microbial fuel cell energy characteristics[D]. Beijing:Beijing University of Technology, 2011.

[1] HE Shuai, GUO Feng, KANG Guojun, YU Jian, REN Xuefeng, XU Guangwen. Preparation of palladium-based catalysts by complexing-solvothermal method and catalytic oxidation of m-xylene [J]. CIESC Journal, 2019, 70(3): 937-943.
[2] SHI Bowen, YIN Yanyan, LIU Fei. Optimal control strategies combined with PSO and control vector parameterization for batchwise chemical process [J]. CIESC Journal, 2019, 70(3): 979-986.
[3] WANG Zhizhen, ZOU Zhiyun. Nonlinear predictive control strategies of pH neutralization process based on neural networks [J]. CIESC Journal, 2019, 70(2): 678-686.
[4] GENG Zhiqiang, JING Shaoxing, BAI Ju, WANG Zhongkai, ZHU Qunxiong, HAN Yongming. Improved intelligent warning method based on MWSPCA-CBR and its application in petrochemical industries [J]. CIESC Journal, 2019, 70(2): 572-580.
[5] ZHANG Xiaohan, WANG Pingjiang, GU Xiangbai, XU Yuan, HE Yanlin, ZHU Qunxiong. Research on principal components extraction based robust extreme learning machine(PCE-RELM) and its application to modeling chemical processes [J]. CIESC Journal, 2019, 70(2): 475-480.
[6] CHEN Haisheng, WANG Tengfei, HUANG Kejin, YUAN Yang, QIAN Xing, ZHANG Liang. Decentralized control system designs for reactive distillation columns with external recycle [J]. CIESC Journal, 2019, 70(2): 440-449.
[7] WANG Limin, LU Libin, GAO Furong, ZHOU Donghua. Infinite horizon linear quadratic hybrid fault-tolerant control for multi-phase batch process [J]. CIESC Journal, 2019, 70(2): 541-547.
[8] KANG Lixia, MA Chenlu, LIU Yongzhong. Operation optimization of modularized energy storage of retired batteries in hybrid power systems [J]. CIESC Journal, 2019, 70(2): 599-606.
[9] LIU Hui'e, HUANG Yangfan, MA Yanbing, CHEN Shuang. Saturated adsorption capacities of graphene aerogels on organics [J]. CIESC Journal, 2019, 70(1): 280-289.
[10] LI Fan, XU Feng, LUO Xionglin. Control configuration design with genetic algorithm for decentralized control system [J]. CIESC Journal, 2018, 69(S2): 266-273.
[11] GENG Lili, YANG Kaixu, ZHANG Nuowei, CHEN Binghui. Synergetic effect of Ru and Cu on catalytic wet oxidation of ammonia-wastewater [J]. CIESC Journal, 2018, 69(9): 3869-3878.
[12] CUI Lingna, LIU Yuejun. Synthesis process optimization and degradation properties of PLA/PBAu block copolymer [J]. CIESC Journal, 2018, 69(9): 4075-4082.
[13] FENG Liwei, ZHANG Cheng, LI Yuan, XIE Yanhong. DLNS-PCA-based fault detection for multimode batch process [J]. CIESC Journal, 2018, 69(7): 3159-3166.
[14] LU Quanfang, YU Jie, YANG Cailing, LI Minrui. Degradation mechanism of Astrazon Pink FG solution by glow discharge electrolysis [J]. CIESC Journal, 2018, 69(6): 2664-2671.
[15] LIU Xinhua, ZHOU Kun, HAN Jie, CHEN Zhihui, LI Huijuan. Scale/corrosion inhibition and biodegradation of lysine modified polyaspartic acid [J]. CIESC Journal, 2018, 69(5): 2127-2136.
Full text



No Suggested Reading articles found!