CIESC Journal ›› 2018, Vol. 69 ›› Issue (5): 2014-2022.doi: 10.11949/j.issn.0438-1157.20171067

Previous Articles     Next Articles

Liquid film flow and heat transfer model under spray impact

QI Hang, ZHANG Wei, GONG Liang   

  1. College of Pipeline and Civil Engineering, China University of Petroleum, Qingdao 266580, Shandong, China
  • Received:2017-08-08 Revised:2017-08-08 Online:2018-05-05 Published:2017-11-10
  • Supported by:

    supported by the National Natural Science Foundation of China (51676208).


Aiming at the shortcomings of the existing calculation model in spray cooling, based on mass, momentum and energy conservation equations, the liquid film flow and heat transfer equations of spray cooling in non-boiling region are established,and magnitude analysis method is applied to simplify equations, and numerical method is used to solve the model. Based on the given values of droplet velocity and temperature, the film thickness, average heat flux and liquid outflow temperature are solved by the model, then the calculated results are compared with the experimental results. The comparison results show that the liquid film thickness difference is less than 6%. The difference of average heat flux and final liquid temperature is less than 10%, and the results that difference less than 5% account for more than 60%. The excellent agreement between simulation and experiment confirms that this model can reasonably reflect flow and heat transfer in spray cooling. The calculated results of film thickness and temperature can deepen the understanding of spray cooling heat transfer mechanism.

Key words: spray cooling, flow, heat transfer, computational fluid dynamics,CFD, model reduction

CLC Number: 

  • TK124

[1] 侯妍冰, 田秀山, 赵辉, 等. 黏弹性对液体初次雾化特性的影响[J]. 化工学报, 2013, 64(5):1601-1606. HOU Y B, TIAN X S, ZHAO H, et al. Influence of viscoelasticity on liquid primary atomization[J]. CIESC Journal, 2013, 64(5):1601-1606.
[2] 陈小艳, 周骛, 蔡小舒, 等. 大型喷雾粒径分布的图像法测量[J]. 化工学报, 2014, 65(2):480-487. CHEN X Y, ZHOU W, CAI X S, et al. Particle size distribution measurement of large spray by imaging[J]. CIESC Journal, 2014, 65(2):480-487.
[3] 王亚青. 喷雾冷却无沸腾区换热特性研究[D]. 合肥:中国科学技术大学, 2010. WANG Y Q. Studying the heat transfer performance in the non-boiling regime of spray cooling[D]. Hefei:University of Science and Technology of China, 2010.
[4] 张伟, 王照亮, 徐明海. 微结构表面封闭式喷雾冷却传热特性[J]. 强激光与粒子束, 2012, 24(9):2053-2058. ZHANG W, WANG Z L, XU M H. Heat transfer characteristics of spray cooling on micro-structured surface in enclosed room[J]. High Power Laser and Particle Beams, 2012, 24(9):2053-2058.
[5] 张伟. 微槽表面喷雾冷却换热特性研究[D]. 青岛:中国石油大学(华东), 2013. ZHANG W. Investigation of heat transfer characteristics of spray cooling on micro-grooved surfaces[D]. Qingdao:China University of Petroleum, 2013.
[6] LABERGUE A, GRADECK M, LEMOINE F. Comparative study of the cooling of a hot temperature surface using sprays and liquid jets[J]. International Journal of Heat and Mass Transfer, 2015, 81:889-900.
[7] 王军. 阵列喷雾冷却换热特性及表面温度均匀性实验研究[D]. 南京:南京理工大学, 2016. WANG J. Experimental research on heat transfer performance and surface temperature uniformity in array spray cooling[D]. Nanjing:Nanjing University of Science & Technology, 2016.
[8] HALVORSON P J. On the heat transfer characteristics of spray cooling[D]. Atlanta:Georgia Institute of Technology, 1993.
[9] SILK E A. Investigation of enhanced surface spray cooling[D]. College Park:University of Maryland, College Park, 2006.
[10] 张伟, 李斌, 王照亮. 表面结构对喷雾冷却临界热通量的影响[J]. 流体机械, 2015, 43(6):34-38. ZHANG W, LI B, WANG Z L. Effects of surface structures on critical heat flux in spray cooling[J]. Fluid Machinery, 2015, 43(6):34-38.
[11] CHEN X Q, CHOW L, SEHMBEY M. Thickness of film produced by pressure atomizing nozzles[C]//30th Thermophysics Conference. 1995:2103.
[12] Fabbri M, Jiang S, Dhir V K. Comparative study of spray and multiple micro jets cooling for high power density electronic applications[C]//ASME 2003 International Mechanical Engineering Congress and Exposition. 2003:657-665.
[13] 王亚青, 刘明侯, 刘东, 等. 喷雾冷却换热机理和影响换热性能的因素[J]. 强激光与粒子束, 2011, 23(9):2277-2281. WANG Y Q, LIU M H, LIU D, et al. Spray cooling heat transfer mechanism and influence factors of heat transfer performance[J]. High Power Laser and Particle Beams, 2011, 23(9):2277-2281.
[14] 张震. 微纳米表面喷雾冷却的机理研究[D]. 北京:清华大学, 2013. ZHANG Z. Two phase spray cooling heat transfer mechanisms on smooth and micro-, nano-, hybrid-structured surfaces[D]. Beijing:Tsinghua University, 2013.
[15] Wang Y, Liu M, Liu D, et al. Experimental study on the effects of spray inclination on water spray cooling performance in non-boiling regime[J]. Experimental Thermal and Fluid Science, 2010, 34(7):933-942.
[16] 刘妮, 李丽荣, 钟泽民. 微结构表面喷雾冷却性能试验研究[J]. 机械工程学报, 2017, 53(6):158-165. LIU N, LI L R, ZHONG Z M. Heat transfer characteristics of spray cooling on micro-structured surface[J]. Journal of Mechanical Engineering, 2017, 53(6):158-165.
[17] Xie J L, Zhao R, Duan F, et al. Thin liquid film flow and heat transfer under spray impingement[J]. Applied Thermal Engineering, 2012, 48:342-348.
[18] 穆文乐. 内混式空气助力喷嘴喷雾特性的试验及数值模拟研究[D]. 西安:长安大学, 2014. MU W L. Experiment research and numerical simulation on spray characteristics of an internal mixing air-blast-atomizer[D]. Xi'an:Chang'an University, 2014.
[19] 赵锐. 喷雾冷却传热机理及空间换热地面模拟研究[D]. 合肥:中国科学技术大学, 2009. ZHAO R. Study on heat transfer mechanism in spray cooling and terrestrial simulation of heat transfer in space[D]. Hefei:University of Science and Technology of China, 2009.
[20] Bai C, Gosman A D. Development of methodology for spray impingement simulation[R]. SAE Technical Paper, 1995.
[21] Healy W M, Halvorson P J, Hartley J G, et al. A critical heat flux correlation for droplet impact cooling at low Weber numbers and various ambient pressures[J]. International Journal of Heat and Mass Transfer, 1998, 41(6/7):975-978.
[22] Sawyer M L, Jeter S M, ABDEL-KHALIK S I. A critical heat flux correlation for droplet impact cooling[J]. International Journal of Heat and Mass Transfer, 1997, 40(9):2123-2131.
[23] 王晓墨, 黄素逸, 龙妍. 波形板分离器中液滴二次携带碰壁模型[J]. 华中科技大学学报(自然科学版), 2003, 31(8):41-43. WANG X M, HUANG S Y, LONG Y. Impinging model of re-entrainment on steam-water separator with corrugated plates[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2003, 31(8):41-43.
[24] Karwa N, Kale S R, Subbarao P M V. Experimental study of non-boiling heat transfer from a horizontal surface by water sprays[J]. Experimental Thermal and Fluid Science, 2007, 32(2):571-579.
[25] Horacek B, Kiger K T, Kim J. Single nozzle spray cooling heat transfer mechanisms[J]. International Journal of Heat and Mass Transfer, 2005, 48(8):1425-1438.
[26] MartÃnez-GalvÃ?n E, Ramos J C, AntÃ?n R Ã, et al. Film thickness and heat transfer measurements in a spray cooling system with R134a[J]. Journal of Electronic Packaging, 2011, 133(1):011002.
[27] Abbasi B, Kim J, Marshall A. Dynamic pressure based prediction of spray cooling heat transfer coefficients[J]. International Journal of Multiphase Flow, 2010, 36(6):491-502.
[28] 王锐, 周致富, 白飞龙, 等. R404a喷雾冷却表面传热特性的时空不均匀性[J]. 化工学报, 2015, 66(4):1258-1264. WANG R, ZHOU Z F, BAI F L. Temporal and radial dependent profiles for surface heat transfer during R404a spray cooling[J]. CIESC Journal, 2015, 66(4):1258-1264.
[29] Pautsch A G, Shedd T A. Adiabatic and diabatic measurements of the liquid film thickness during spray cooling with FC-72[J]. International Journal of Heat and Mass Transfer, 2006, 49(15):2610-2618.
[30] 王亚青, 刘明侯, 刘东, 等. 大功率激光器喷雾冷却中无沸腾区换热性能实验研究[J]. 中国激光, 2009, 36(8):1973-1978. WANG Y Q, LIU M H, LIU D, et al. Experiment study on non-boiling heat transfer performance in spray cooling for high-power laser[J]. Chinese Journal of Lasers, 2009, 36(8):1973-1978.

[1] SHI Suli, LU Yuanwei, YU Qiang, WU Yuting. Optimization of heat removal modes for heat exchanger in molten salt single storage tank [J]. CIESC Journal, 2019, 70(3): 857-864.
[2] WANG Hanlin, WANG Deqiang, WANG Kai, LUO Guangsheng. Continuous synthesis of anisole in microreactor system [J]. CIESC Journal, 2019, 70(3): 922-928.
[3] YU Jianliang, HOU Yujie, YAN Xingqing, JI Wentao, YU Xiaozhe, WANG Yibo. Experimental study on flame propagation characteristic of polyethylene dust explosion under confined chamber [J]. CIESC Journal, 2019, 70(3): 1227-1235.
[4] LIU Xiaoshi, ZOU Deqiu, HE Ruijun, MA Xianfeng. Preparation and heat transfer characteristics of GO/paraffin composite phase change emulsions [J]. CIESC Journal, 2019, 70(3): 1188-1197.
[5] ZHANG Hang, WENG Jianhua, CUI Xiaoyu. Heat transfer performance of pulsating heat pipe with hygroscopic salt solution [J]. CIESC Journal, 2019, 70(3): 874-882.
[6] HUANG Zhijia, LUO Liang, KE Rui, ZHUO Feifei, ZHONG Liang. Dehumidification performance experiment of hydrophilic non-woven PVC composite structured packing [J]. CIESC Journal, 2019, 70(3): 913-921.
[7] WU Xuan, LI Xiaorui, MA Jun, QIN Mengzhu, ZHOU Yahui, LI Haiguang. Behavior characteristics of bubble formation under various nozzle immersion modes [J]. CIESC Journal, 2019, 70(3): 901-912.
[8] ZHOU Xin, DENG Ledong, WANG Hong, ZHU Xun, CHEN Rong, LIAO Qiang, DING Yudong. Effect of cooled cylindrical surface on droplet dynamic behavior [J]. CIESC Journal, 2019, 70(3): 883-891.
[9] WU Changhao, LIU Linlin, ZHANG Lei, DU Jian. Inter-plant waste heat integration for industrial park using two medium fluids [J]. CIESC Journal, 2019, 70(2): 431-439.
[10] NI Chengzhen, DU Wenli, HU Guihua. Impact of turbulence model in coupled simulation of ethylene cracking furnace [J]. CIESC Journal, 2019, 70(2): 450-459.
[11] XUE Yongfei, WANG Yalin, SUN Bei, LI Qianzhong, SUN Jiazhou. Improved state transfer algorithm-based kinetics parameter estimation for cascaded plug flow reactors [J]. CIESC Journal, 2019, 70(2): 607-616.
[12] XIA Hongtao, ZOU Siyu, XIAO Jie. Numerical simulation of shear-thinning droplet impacting on randomly rough surfaces [J]. CIESC Journal, 2019, 70(2): 634-645.
[13] WANG Li, WU Weidong, HU Kun. Influence of circulating air quantity on cooling system and water producing performance of new household pure water machine [J]. CIESC Journal, 2019, 70(1): 99-106.
[14] LIU Zhongyan, SUN Dahan, JIN Xu, WANG Tianhao, MA Yitai. Evaluation research on boiling heat transfer model of CO2 in tube [J]. CIESC Journal, 2019, 70(1): 56-64.
[15] CHEN Wei, REN Ying. Similarity between fluidization and phase transition [J]. CIESC Journal, 2019, 70(1): 1-9.
Full text



No Suggested Reading articles found!