CIESC Journal ›› 2019, Vol. 70 ›› Issue (1): 136-145.doi: 10.11949/j.issn.0438-1157.20171033

• Separation engineering • Previous Articles     Next Articles

Research and optimization of separation technology of methanol to propylene

Zizong WANG1,2,Hongqian LIU3(),Jiming WANG1   

  1. 1. East China University of Technology, Shanghai 200237, China
    2. China Petrochemical Corporation, Beijing 100728,China
    3. SINOPEC Engineering Incorporation, Beijing 100101, China
  • Received:2018-07-31 Revised:2018-10-30 Online:2019-01-05 Published:2018-12-13
  • Contact: Hongqian LIU E-mail:liuhq.sei@sinopec.com

Abstract:

Based on the actual equipment of 1.7 million tons/year methanol to propylene (MTP), this paper studies and optimizes the MTP separation process, draws on the experience of separation of naphtha ethylene unit, and optimizes the formation characteristics of MTP product gas. The process combination, process simulation and optimization of the separation technology are carried out together with de-methanizer tower and its exhaust gas recovery system, highly thermal coupling decarburization system (de-ethanizer and ethylene rectifying column), sorbent selection, and screen out a more suitable separation technology consisting of the following process unit: pre-cutting front-end deethanizer, recovery of de-methanizer tail gas by combination of intercooling oil absorption and throttle expansion, highly thermally coupled deethanizer system, take carbon four mixture as absorbing agent, etc.Assuming that there are no ethylene, carbon four and carbon five cycles back to the MTP reactor, the ethylene loss in the exhaust meets the design requirements, using the optimized separation technique, the dual power of the compressor and propylene compressor is 19.8 MW. The simulation results show that the optimized flow has a good application prospect.

Key words: methanol to propylene, simulation and optimization, separation technology, absorption, heat integration distillation

CLC Number: 

  • TQ 021.8

Table 1

Composition of product gas from methanol-to-propylene device[3] "

组分 摩尔分数/%
H2 0.2
N2 0
O2 0
CO 0.4
CO2 0.15
H2S 0
oxide 1.7
CH4 3.8
C2H2 0
C2H6 2.2
C2H4 14.3
C3H8 0.7
C3H6 25.2
C3H4 0
C4 20.1
C5 + 31.25

Fig.1

Schematic diagram of sequential separation technique (C3H8 as absorbent)"

Fig.2

Schematic diagram of front-end depropanization separation technique (C3H8 as absorbent)"

Fig.3

Schematic diagram of front-end deethanizer separation technique (C3H8 as absorbent)"

Table 2

Utility consume of sequential separation, front-end depropanizer and front-end deethanizer processes (C3H8 as absorbent)"

流程 产品气压缩机/MW 丙烯压缩机/MW 冷却水消耗/(kt/h) 低压蒸汽消耗/(t/h) 高压蒸汽消耗/(t/h)
顺序分离 12.80 8.43 43.95 160.5 143.7
前脱丙烷 13.74 10.31 46.266 183 162.8
前脱乙烷 13.3 8.3 51.331 186 149.3

Fig.4

Comparison of standard fuel oil consumption in sequential separation, front-end depropanizer and front-end deethanizer processes (C3H8 as absorbent)"

Fig.5

Schematic diagram of sequential separation technique (C4S as absorbent)"

Fig.6

Schematic diagram of front-end depropanizer separation technique (C4S as absorbent)"

Fig.7

Schematic diagram of front-end deethanizer separation technique (C4S as absorbent)"

Table 3

Utility consume of sequential separation, front-end depropanizer and front-end deethanizer processes (C4S as absorbent) (clear cutting rectification)"

流程 产品气压缩机/MW 丙烯压缩机/MW 冷却水消耗/(kt/h) 低压蒸汽消耗(t/h) 高压蒸汽消耗/(t/h)
顺序分离 12.80 7.66 39.60 129 139
前脱丙烷 14.00 10.01 37.165 89 162.8
前脱乙烷 13.00 8.26 37.036 90.6 143

Fig.8

Comparison of standard fuel oil consumption in sequential separation, front-end depropanizer and front-end deethanizer processes(C4S as absorbent) (clear cutting rectification)"

Fig.9

Standard fuel oil consumption of separation section using C3H8 and C4S as absorbent individually"

Fig.10

Schematic diagram of front-end deethanizer separation process (C4S as absorbent, non-clear cutting)"

Table 4

Utility consume of front end de-deethanizer (C4S as absorbent)"

流程 产品气压缩机/MW 丙烯压缩机/MW

冷却水消耗/

(kt/h)

低压蒸汽消耗/

(t/h)

高压蒸汽消耗/

(t/h)

图7流程(清晰切割) 12.86 7.75 37.0 104 140
图10流程(非清晰切割-第二脱乙烷塔) 12.8 7.1 209 77 135

Fig.11

Comparison of fuel oil consumption of front-deethanizer process (clear cutting and non-clear cutting)"

Fig.12

Thermally coupled non-clear cutting process of front-end deethanizer separation technique (C4S as absorbent)"

Table 5

Utility consume of thermally coupled front-end deethanizer separation technique (C4S as absorbent)"

产品气压缩机/MW 丙烯压缩机/MW 冷却水消耗/(kt/h) 低压蒸汽消耗/(t/h) 高压蒸汽消耗/(t/h)
12.8 7.05 210 77.4 135.2

Fig.13

Comparison of standard fuel oil consumption in conventional and thermally coupled for non-clear cutting front-end deethanizer separation"

1 Rothaemel M , Holtmann H D . Methanol to propylene MTP: Lurgi is way[J]. Erdol Erdgas Kohle, 2002, 118(5): 234- 237.
2 曹湘洪 .重视甲醇制乙烯丙烯的技术开发大力开拓天然气新用途[J].当代石油石化, 2004, 12(12): 1-6.
Cao X H . Attaching great important to technical development of MTO & MTP, devoting major efforts to explore new application of natural gas [J]. Petroleum & Petrochemical Today, 2004, 12(12): 1-6.
3 胡玉梅 . 甲醇制丙烯技术应用前景及装置建设相关问题探讨[J].国际石油经济, 2005, 13(9): 45-49.
Hu Y M . Prospects of MTP application and development of related equipment. [J]. International Petroleum Economics, 2005, 13(9): 45-49.
4 柯丽, 冯静, 张明森 . 甲醇转化制烯烃技术的新进展[J]. 石油化工, 2006, 35(3): 205-211.
Ke L , Feng J , Zhang M S . Advances in catalytic conversion process of methanol[J]. Petrochemical Technology , 2006, 35(3): 205-211.
5 毛东森, 郭强胜, 卢冠忠 . 甲醇转化制丙烯技术进展[J].石油化工, 2008, 37(12): 1328-1333.
Mao D S , Guo Q S , Lu G Z . Advances in catalytic conversion of methanol to propylene[J]. Petrochemical Technology, 2008, 37(12): 1328-1333.
6 潘澍宇, 江洪波, 翁惠新 . 甲醇作为催化裂化部分进料的反应过程[J].化工学报, 2006, 57(4): 785-790.
Pan S Y , Jiang H B , Weng H X . Reaction of methanol as part of FCC feedstock [J]. Journal of Chemical Industry and Engineering (China), 2006, 57(4) : 785-790.
7 朱杰, 崔宇, 陈元君, 等 . 甲醇制烯烃过程研究进展[J].化工学报, 2010, 61(7): 1674-1684.
Zhu J , Cui Y , Chen Y J , et al . Recent researches on process from methanol to olefins [J]. CIESC Journal, 2010, 61(7): 1674-1684.
8 吴文章, 郭文瑶, 肖文德, 等 . 甲醇与C4~C6烯烃共反应制丙烯副产物生成途径[J]. 化工学报, 2012, 63(2): 493-499.
Wu W Z , Guo W Y , Xiao W D , et al . Reaction path for formation of by-products in co-reaction of methanol and C4—C6 alkenes to propylene[J]. CIESC Journal, 2012, 63(2): 493 - 499.
9 严丽霞, 蒋云涛, 蒋斌波, 等 . 移动床甲醇制丙烯技术的工艺与工程[J]. 化工学报, 2014, 65(1): 2-11.
Yan L X , Jiang Y T , Jiang B B , et al . Methanol to propylene process using moving bed technology and its engineering study[J]. CIESC Journal, 2014, 65(1): 2-11.
10 陈硕, 王定博, 吉媛媛, 等 . 丙烯为目的产物的技术进展[J].石油化工, 2011, 40 (2): 217-224.
Chen S , Wang D B , Ji Y Y , et al . Development in on-purpose propylene technology[J]. Petrochemical Technology, 2011, 40(2): 217-224.
11 王松汉 . 乙烯装置技术与运行[M]. 北京: 中国石化出版社有限公司, 2009.
Wang S H . Technology and Operation of Ethylene Plant [M]. Beijing: China Petrochemical Press Co. Ltd., 2009.
12 王松汉 . 乙烯工艺与技术(精化版)[M]. 北京: 中国石化出版社有限公司, 2012.
Wang S H .The Production Process and Technology (Essence Edition) [M]. Beijing: China Petrochemical Press Co. Ltd., 2012.
13 陈明辉, 王俭, 李勇 . 国际先进乙烯装置分离技术的进展[J]. 化学反应工程与工艺, 2005, 21 (6): 542-550.
Chen M H , Wang J , Li Y . Progress in separation technology of world ethylene plant[J]. Chemical Reaction Engineering and Technology,2005, 21(6): 542-550.
14 王子宗 . 一种从甲醇制丙烯产品气中回收乙烯的系统及方法: 201410247261.3[P]. 2017-06-20.
Wang Z Z . A system and method for recovering ethylene from gas from methanol to propylene production: 201410247261.3[P]. 2017- 06-20.
15 王子宗 . 一种组合吸收塔、尾气膨胀系统及尾气回收方法: 201410462689.X [P]. 2017-09-12.
Wang Z Z . A combined absorption tower, tail gas expansion system and tail gas recovery method: 201410462689.X [P].2017-09-12.
16 王松汉 . 改进的分凝分馏塔系统: 1070385C [P].2001-09-05.
Wang S H . Improved fractionating and fractionating tower system: 1070385C[P]. 2001-09-05.
17 王子宗, 王松汉, 李广华 . 分凝分馏塔工业试验[J]. 石油化工, 2003, 32(S): 816-818.
Wang Z Z , Wang S H , Li G H . Industrial test of fractionating fractionator [J]. Petrochemical Technology, 2003, 32(S): 816-818.
18 龚旭辉 . 一种利用甲醇生产丙烯和高辛烷值汽油的方法: 201110242549.8A[P].2012-06-20.
Gong X H . A method for producing propylene and high octane gasoline by using methanol: 201110242549.8A[P].2012-06-20.
19 李围潮, 王松汉 .油吸收分离流程的可行性分析和评价[J]. 乙烯工业, 1999, 11(2): 7-11.
Li W C , Wang S H . Feasibility analysis and evaluation of oil absorption and separation process[J]. Ethylene Industry, 1999, 11(2): 7-11.
20 Jana A K . Heat integrated distillation operation [J]. Appl. Energ., 2010, 87(5): 1477-1494.
21 Linnhoff B , Dunford H , Smith R . Heat integration of distillation columns into overall processes[J]. Chem. Eng. Sci., 1983, 38(8): 1175-1188.
22 Wright R O . Fractionation apparatus: US 2471134[P]. 1949-05-24.
23 Petlyuk F B , Platonoy V M , Slavinskii D M . Thermodynamically optimal method for separating multicomponent mixtures [J]. Int. Chem. Eng., 1965, 5: 555-561.
24 Wolff E A , Skogestad S . Operation of integrated three-product (Petlyuk) distillation column [J]. Ind Eng. Chem. Res., 1995, 34(6): 2094-2103.
25 Kaibel G . Distillation columns with vertical partitions[J]. Chem. Eng. Technol., 1987, 10(1): 92-98.
26 刘雪刚, 何畅, 雷杨, 等 . 基于塔总组合曲线的内部热耦合精馏塔优化设计方法[J]. 化工学报, 2017, 68(4): 1482-1489.
Liu X G , He C , Lei Y , et al . Optimized design method for internal heat-integrated distillation columns based on column grand composite curve [J]. CIESC Journal, 2017, 68(4): 1482-1489.
27 常亮, 刘兴高 . 内部热耦合空分塔的节能优化分析[J]. 化工学报, 2012, 63(9): 2936-2940.
Chang L , Liu X G . Energy optimization analyses of internal thermally coupled air separation columns [J]. CIESC Journal, 2012, 63(9): 2936-2940.
28 李玉刚, 王晓红, 郑世清, 等 . 含非清晰塔的精馏系统综合[J].化工学报, 2008, 59(2): 415-419.
Li Y G , Wang X H , Zheng S Q , et al . Synthesis of distillation system consideration no-sharp separation [J]. Journal of Chemical Industry and Engineering (China), 2008, 59(2): 415-419.
[1] Zhe LI, Wenlong WANG, Meng ZHANG, Jing SUN, Yanpeng MAO, Xiqiang ZHAO, Zhanlong SONG. Low frequency electromagnetic parameters and absorbing heat generation properties of carbon nanotubes [J]. CIESC Journal, 2019, 70(S1): 28-34.
[2] Yong JIA, Jin JIANG, Ren ZHAO, Weilong RONG, Liguo YIN, Mingyan GU, Hongming LONG. Investigation of mass transfer coefficient of absorption of sulfur dioxide by ammonia [J]. CIESC Journal, 2019, 70(4): 1367-1374.
[3] Shaojuan ZENG, Dawei SHANG, Min YU, Hao CHEN, Haifeng DONG, Xiangping ZHANG. Applications and perspectives of NH3 separation and recovery with ionic liquids [J]. CIESC Journal, 2019, 70(3): 791-800.
[4] Xiaofang LIU, Haiyan GUO, Shengnan ZHANG, Liang HUANG. Influencing factors of denitrification of glycans and transformation characteristics of internal carbon sources [J]. CIESC Journal, 2019, 70(3): 1127-1134.
[5] Tao TIAN, Bing LIU, Meisheng SHI, Yaxiong AN, Jun MA, Yanjun ZHANG, Xinxi XU, Donghui ZHANG. Experiment and simulation of PSA process for small oxygen generator with two adsorption beds [J]. CIESC Journal, 2019, 70(3): 969-978.
[6] Yuanmo WU, Shouyu ZHANG, Hua ZHANG, Chen MU, Hao LI, Xiaobing SONG, Junfu LYU. Relationship between pore structure and moisture reabsorption of lignite dewatered by high temperature drying process [J]. CIESC Journal, 2019, 70(1): 199-206.
[7] SUN Yanjun, DI Gaolei, XIA Juan, WANG Xiaopo, JIN Liwen. Thermodynamic analysis of absorption refrigeration cycles using ionic liquids as absorbents [J]. CIESC Journal, 2018, 69(S2): 38-44.
[8] WANG Qin, LIU Yilun, LU Wei, WANG Shikuan, HE Wei, HAO Nan, ZHANG Shaozhi. Experiment on transport performance of bubble pumps with R134a/R23-DMF solutions [J]. CIESC Journal, 2018, 69(S2): 116-122.
[9] LIU Yang, HAN Jitian, YOU Huailiang. Performance of combined cooling, heating and power system based on SOFC/GT/TCO2 integrated power cycle and LiBr-water absorption chiller [J]. CIESC Journal, 2018, 69(S2): 341-349.
[10] LIU Dunyu, WALL Terry, STANGER Rohan. Experimental and modelling study on co-absorption of SO2 and CO2 during desulfurization process by flue gas cooler for oxy-fuel combustion flue gas [J]. CIESC Journal, 2018, 69(9): 4019-4029.
[11] ZHAO Ning, WANG Peipei, GUO Suna, FANG Lide, WANG Dongxing, CHEN Xue. Interfacial disturbance wave velocity of gas-liquid two-phase annular flow in vertical pipe [J]. CIESC Journal, 2018, 69(7): 2926-2934.
[12] SU Mingxu, MUHAMMAD Abdul Ahad, JIANG Yong, WU Wei, YANG Huinan. Synchronous thickness measurements of flowing liquid film on horizontal surface by ultrasonic pulse-echo and laser absorption spectroscopy methods [J]. CIESC Journal, 2018, 69(7): 2972-2978.
[13] WANG HongHai, WANG Baozheng, LI Chunli, JI Pengyu. Optimization and experimental study of vertical double wall dividing-wall column for separating a quaternary system [J]. CIESC Journal, 2018, 69(7): 3050-3058.
[14] JI Ruijun, XU Wenqing, WANG Jian, YAN Chaoyu, ZHU Tingyu. Research progress of ozone oxidation denitrification technology [J]. CIESC Journal, 2018, 69(6): 2353-2363.
[15] SUN Hongjun, GUI Mingyang, ZHAO Ning. Frequency characteristics of disturbance wave at vertical gas-liquid annular flow interface [J]. CIESC Journal, 2018, 69(5): 1915-1922.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LING Lixia, ZHANG Riguang, WANG Baojun, XIE Kechang. Pyrolysis Mechanisms of Quinoline and Isoquinoline with Density Functional Theory[J]. , 2009, 17(5): 805 -813 .
[2] LEI Zhigang, LONG Aibin, JIA Meiru, LIU Xueyi. Experimental and Kinetic Study of Selective Catalytic Reduction of NO with NH3 over CuO/Al2O3/Cordierite Catalyst[J]. , 2010, 18(5): 721 -729 .
[3] SU Haifeng, LIU Huaikun, WANG Fan, LÜXiaoyan, WEN Yanxuan. Kinetics of Reductive Leaching of Low-grade Pyrolusite with Molasses Alcohol Wastewater in H2SO4[J]. , 2010, 18(5): 730 -735 .
[4] WANG Jianlin, XUE Yaoyu, YU Tao, ZHAO Liqiang. Run-to-run Optimization for Fed-batch Fermentation Process with Swarm Energy Conservation Particle Swarm Optimization Algorithm[J]. , 2010, 18(5): 787 -794 .
[5] SUN Fubao, MAO Zhonggui, ZHANG Jianhua, ZHANG Hongjian, TANG Lei, ZHANG Chengming, ZHANG Jing, ZHAI Fangfang. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837 -842 .
[6] Gao Ruichang, Song Baodong and Yuan Xiaojing( Chemical Engineering Research Center, Tianjin University, Tianjin 300072). LIQUID FLOW DISTRIBUTION IN GAS - LIQUID COUNTER - CONTACTING PACKED COLUMN[J]. , 1999, 50(1): 94 -100 .
[7] Su Yaxin, Luo Zhongyang and Cen Kefa( Institute of Thermal Power Engineering , Zhejiang University , Hangzhou 310027). A STUDY ON THE FINS OF HEAT EXCHANGERS FROM OPTIMIZATION OF ENTROPY GENERATION[J]. , 1999, 50(1): 118 -124 .
[8] Luo Xiaoping(Department of Industrial Equipment and Control Engineering , South China University of Technology, Guangzhou 510641)Deng Xianhe and Deng Songjiu( Research Institute of Chemical Engineering, South China University of Technology, Guangzhou 5106. RESEARCH ON FLOW RESISTANCE OF RING SUPPORT HEAT EXCHANGER WITH LONGITUDINAL FLUID FLOW ON SHELL SIDE[J]. , 1999, 50(1): 130 -135 .
[9] Jin Wenzheng , Gao Guangtu , Qu Yixin and Wang Wenchuan ( College of Chemical Engineering, Beijing Univercity of Chemical Technology, Beijing 100029). MONTE CARLO SIMULATION OF HENRY CONSTANT OF METHANE OR BENZENE IN INFINITE DILUTE AQUEOUS SOLUTIONS[J]. , 1999, 50(2): 174 -184 .
[10]

LI Qingzhao;ZHAO Changsui;CHEN Xiaoping;WU Weifang;LI Yingjie

.

Combustion of pulverized coal in O2/CO2 mixtures and its pore structure development

[J]. , 2008, 59(11): 2891 -2897 .