CIESC Journal ›› 2018, Vol. 69 ›› Issue (3): 1081-1091.doi: 10.11949/j.issn.0438-1157.20170844

Previous Articles     Next Articles

Full-cycle operation optimization of acetylene hydrogenation reactor

XIE Fuming1, XU Feng1, LIANG Zhishan1, LUO Xionglin1, SHI Fengyong2   

  1. 1 Department of Automation, China University of Petroleum, Beijing 102249, China;
    2 CNPC North China Petrochemical, Renqiu 062552, Hebei, China
  • Received:2017-06-30 Revised:2017-11-13 Online:2018-03-05 Published:2017-12-07
  • Supported by:

    supported by the National Natural Science Foundation of China (21676295).

Abstract:

Acetylene hydrogenation reactor is an important unit operation in ethylene process, whose operation deeply influences yield and purity of ethylene product. Within an operating cycle, the catalyst activity in reactor gradually declines with time, the operating point will slowly deviates from the initial steady-state design point such that the ethylene yield will drop. To implement the full-cycle operation optimization, the kinetics model of catalyst deactivation considering green oil accumulation is presented through deactivation mechanism research, then a two-dimensional heterogeneous dynamic model of acetylene hydrogenation reactor with modified catalyst deactivation equation is proposed. The full-cycle simulation on gPROMS software verifies the correctness of modified model, and the full-cycle operation optimization is solved by Matlab optimizer on upper layer interacting with gPROMS simulation. The optimization results show that, the full-cycle operation optimization is superior to the fixed value temperature compensation in regard to both the economic benefit and the regeneration cycle of reactor, and the full-cycle operation optimization simultaneously optimizing inlet temperature and hydrogen input is of greater advantage.

Key words: process systems, operation optimization, process control, acetylene hydrogenation, catalyst deactivation model

CLC Number: 

  • TQ021.8

[1] 涂飞, 青红英, 罗雄麟, 等. 乙炔加氢反应器的先进控制(Ⅰ):动态机理模型的建立[J]. 化工自动化及仪表, 2003, 30(1):20-24. TU F, QING H Y, LUO X L, et al. Advanced process control of acetylene hydrogenation reactor (Ⅰ):Construct dynamic model[J]. Control and Instruments in Chemical Industry, 2003, 30(1):20-24.
[2] WEISS G. Modeling and control of the acetylene converter[J]. Journal of Process Control, 1996, 6(1):7-15.
[3] GOBBO R. SOARES R P, LANSARIN M A, et al. Modeling, simulation, and optimization of a front-end system for acetylene hydrogenation reactors[J]. Brazilian Journal of Chemical Engineering, 2004, 21(4):545-556.
[4] HUANG W, MCCORMICK J R, LOBO R F, et al. Selective hydrogenation of acetylene in the presence of ethylene on zeolite-supported bimetallic catalysts[J]. Journal of Catalysis, 2007, 246(1):40-51.
[5] PACHULSKI A, SCHODEL R, CLAUS P. Kinetics and reactor modeling of a Pd-Ag/Al2O3 catalyst during selective hydrogenation of ethyne[J]. Applied Catalysis A:General, 2012, 445/446(6):107-120.
[6] SZUKIEWICZ M, KACZMARSKI K, PETRUS R. Modeling of fixed-bed reactor:two models of industrial reactor for selective hydrogenation of acetylene[J]. Chemical Engineering Science, 1998, 53(1):149-155.
[7] 罗雄麟, 刘建新, 许锋, 等. 乙炔加氢反应器二维非均相机理动态建模及分析[J]. 化工学报, 2008, 59(6):1454-1461. LUO X L, LIU J X, XU F, et al. Hydrogenation, two-dimensional dynamic modeling and analysis of acetylene hydrogenation reactor[J]. Journal of Chemical Industry and Engineering(China), 2008, 59(6):1454-1461.
[8] BORODZINSKI A, CYBULSKI A. The kinetic model of hydrogenation of acetylene-ethylene mixtures over palladium surface covered by carbonaceous deposits[J]. Applied Catalysis A:General, 2000, 198(1):51-66.
[9] BROWN M W, PENLIDIS A, SULLIVAN G R. Control policies for an industrial acetylene hydrogenation reactor[J]. Canadian Journal of Chemical Engineering, 2010, 69(1):56-59.
[10] LESIEUR M, SHARMA S, NATH R. Advanced process control and optimization of acetylene hydrogenation reactors[C]//2003 AIChE Spring National Meeting 15th Annual Ethylene Producers' Conference Session T9a05-Ethylene Plant Process Control. 2003:T9a05-F.
[11] 田亮, 蒋达, 钱锋. 乙炔加氢反应系统操作优化策略[J]. 化工学报, 2015, 66(1):373-377. TIAN L, JIANG D, QIAN F. Reactor system switch strategy for acetylene hydrogenation process[J]. CIESC Journal, 2015, 66(1):373-377.
[12] 田亮, 蒋达, 钱锋. 催化剂失活条件下的碳二加氢反应器模拟与优化[J]. 化工学报, 2012, 63(1):185-192. TIAN L, JIANG D, QIAN F. Simulation and optimization of acetylene converter with decreasing catalyst activity[J]. CIESC Journal, 2012, 63(1):185-192.
[13] 张志良. 反应深度分析与控制[D]. 北京:中国石油大学, 2006. ZHANG Z L. Analysis and control of the reaction depth[D]. Beijing:China University of Petroleum, 2006.
[14] 戴伟, 朱警, 万文举. C2馏分选择加氢工艺和催化剂研究进展[J]. 石油化工, 2000, 29(7):535-540. DAI W, ZHU J, WAN W J. Research development of C2 selective hydrogenation technology and catalysis[J]. Petrochemical Technology, 2000, 29(7):535-540.
[15] 朱炳辰. 化学反应工程[M]. 北京:化学工业出版社, 2001:41-42. ZHU B C. Chemical Reaction Engineering[M]. Beijing:Chemical Industry Press, 2001:41-42.
[16] 涂飞. 乙炔加氢反应器先进控制及工程应用[D]. 北京:中国石油大学, 2002. TU F. Advanced process control and engineering application of acetylene hydrogenation reactor[D]. Beijing:China University of Petroleum, 2002.
[17] 罗雄麟, 涂飞, 杜殿林, 等. 乙炔加氢反应器的先进控制(Ⅲ):控制策略及工程应用[J]. 化工自动化及仪表, 2003, 30(3):10-15. LUO X L, TU F, DU D L, et al. Advanced process control of acetylene hydrogenation reactor (Ⅲ):Control strategy and engineering application[J]. Control and Instruments in Chemical Industry, 2003, 30(3):10-15.
[18] 刘建新. 乙炔加氢反应器动态模拟与操作优化[D]. 北京:中国石油大学, 2008. LIU J X. Dynamic modeling and operation optimization of acetylene hydrogenation reactor[D]. Beijing:China University of Petroleum, 2008.
[19] XU F, LUO X L, WANG R. Design margin and control performance analysis of a fluid catalytic cracking unit regenerator under model predictive control[J]. Industrial & Engineering Chemistry Research, 2014, 53(37):14339-14350.
[20] XU F, JIANG H R, WANG R, et al. Influence of design margin on operation optimization and control performance of chemical processes[J]. Chinese Journal of Chemical Engineering, 2014, 22(1):51-58.
[21] 许锋, 罗雄麟. 基于动态优化的催化裂化装置再生器裕量分析与控制设计(Ⅰ):动态优化的数学描述[J]. 化工学报, 2009, 60(3):675-682. XU F, LUO X L. Margin analysis and control design of FCCU regenerator based on dynamic optimization (Ⅰ):Mathematical description of dynamic optimization[J]. CIESC Journal, 2009, 60(3):675-682.
[22] 许锋, 罗雄麟. 基于动态优化的催化裂化装置再生器裕量分析与控制设计(Ⅱ):求解方法与结果分析[J]. 化工学报, 2009, 60(3):683-690. XU F, LUO X L. Margin analysis and control design of FCCU regenerator based on dynamic optimization (Ⅱ):Solution and result analysis[J]. CIESC Journal, 2009, 60(3):683-690.
[23] 许锋, 罗雄麟. 先进控制条件下化工过程操作裕量与控制性能分析[J]. 化工学报, 2012, 63(3):881-886. XU F, LUO X L. Manipulation margin and control performance analysis of chemical process under advanced process control[J]. CIESC Journal, 2012, 63(3):881-886.
[24] 许锋, 蒋慧蓉, 王锐, 等. 催化裂化装置裕量评价与瓶颈分析[J]. 化工学报, 2013, 64(6):2131-2144. XU F, JIANG H R, WANG R, et al. Margin evaluation and bottleneck analysis for FCCU[J]. CIESC Journal, 2013, 64(6):2131-2144.
[25] 蒋慧蓉. 化工过程裕量分析与控制设计及其在催化裂化装置的应用[D]. 北京:中国石油大学(北京), 2013. JIANG H R. Margin analysis and control design of chemical process in fluidized catalytic cracking unit[D]. Beijing:China University of Petroleum, 2013.
[26] RAVANCHI M T, SAHEBDELFAR S. Pd-Ag/Al2O3 catalyst:stages of deactivation in tail-end acetylene selective hydrogenation[J]. Applied Catalysis A:General, 2016, 525:197-203.
[27] KUHN M, LUCAS M, CLAUS P. Precise recognition of catalyst deactivation during acetylene hydrogenation studied with the advanced TEMKIN reactor catalysis[J]. Communications, 2015, 72(2):170-173.
[28] MCCUE A J, MCRITCHIE C J, SHEPHERD A M, et al. Cu/Al2O3 catalysts modified with Pd for selective acetylene hydrogenation[J]. Journal of Catalysis, 2014, 319:127-135.
[29] ALBERS P, PIETSCH J, PARKER S F. Poisoning and deactivation of palladium catalysts[J]. Journal of Molecular Catalysis A:Chemical, 2001, 173(1):275-286.
[30] RAHIMPOUR M R, DEHGHANI O, GHOLIPOUR M R, et al. A novel configuration for Pd/Ag/a-Al2O3 catalyst regeneration in the acetylene hydrogenation reactor of a multi feed cracker[J]. Chemical Engineering Journal, 2012, 198/199:491-502.

[1] TANG Junmiao, YU Haizhen, SHI Xuhua, TONG Chudong. Dynamic monitoring of chemical processes based on latent variable auto-regressive algorithm [J]. CIESC Journal, 2019, 70(3): 987-994.
[2] SHI Bowen, YIN Yanyan, LIU Fei. Optimal control strategies combined with PSO and control vector parameterization for batchwise chemical process [J]. CIESC Journal, 2019, 70(3): 979-986.
[3] MU Peng, GU Xiangbai, ZHU Qunxiong. Modeling and optimization of ethylene cracking feedstock scheduling based on P-graph [J]. CIESC Journal, 2019, 70(2): 556-563.
[4] WANG Zhizhen, ZOU Zhiyun. Nonlinear predictive control strategies of pH neutralization process based on neural networks [J]. CIESC Journal, 2019, 70(2): 678-686.
[5] YE Zhencheng, ZHOU Huanlan, RAO Debao. Hybrid modeling and optimization of acetylene hydrogenation process [J]. CIESC Journal, 2019, 70(2): 496-507.
[6] PENG Kaixiang, ZHANG Chuanfang, MA Liang, DONG Jie, JIAO Ruihua, TANG Peng. System-levels-based holographic fault diagnosis for complex industrial processes [J]. CIESC Journal, 2019, 70(2): 590-598.
[7] GENG Zhiqiang, JING Shaoxing, BAI Ju, WANG Zhongkai, ZHU Qunxiong, HAN Yongming. Improved intelligent warning method based on MWSPCA-CBR and its application in petrochemical industries [J]. CIESC Journal, 2019, 70(2): 572-580.
[8] TANG Jian, QIAO Junfei. Dioxin emission concentration soft measuring approach of municipal solid waste incineration based on selective ensemble kernel learning algorithm [J]. CIESC Journal, 2019, 70(2): 696-706.
[9] ZHANG Xiaohan, WANG Pingjiang, GU Xiangbai, XU Yuan, HE Yanlin, ZHU Qunxiong. Research on principal components extraction based robust extreme learning machine(PCE-RELM) and its application to modeling chemical processes [J]. CIESC Journal, 2019, 70(2): 475-480.
[10] CHEN Haisheng, WANG Tengfei, HUANG Kejin, YUAN Yang, QIAN Xing, ZHANG Liang. Decentralized control system designs for reactive distillation columns with external recycle [J]. CIESC Journal, 2019, 70(2): 440-449.
[11] WANG Limin, LU Libin, GAO Furong, ZHOU Donghua. Infinite horizon linear quadratic hybrid fault-tolerant control for multi-phase batch process [J]. CIESC Journal, 2019, 70(2): 541-547.
[12] MENG Xiangkun, CHEN Guoming, ZHENG Chunliang, WU Xiangfei, ZHU Gaogeng. Risk evaluation model of deepwater drilling blowout accident based on risk entropy and complex network [J]. CIESC Journal, 2019, 70(1): 388-397.
[13] XIONG Xiaojun, HE Ting, LIN Wensheng. Process of BOG treating in LNG receiving station with normal temperature compressor [J]. CIESC Journal, 2018, 69(S2): 425-430.
[14] LI Fan, XU Feng, LUO Xionglin. Control configuration design with genetic algorithm for decentralized control system [J]. CIESC Journal, 2018, 69(S2): 266-273.
[15] LI Peijie, YANG Bo, LI Hongguang. Association rules based conditional state fuzzy Petri nets with applications in fault diagnosis [J]. CIESC Journal, 2018, 69(8): 3517-3527.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!