CIESC Journal ›› 2018, Vol. 69 ›› Issue (4): 1255-1260.doi: 10.11949/j.issn.0438-1157.20170836

Previous Articles     Next Articles

Highlights of international forward osmosis technology symposium (IFOS2016): is forward osmosis feasible?

ZHAO Shuwei1,2, HE Tao2, LI Xuemei2, GAO Congjie3, HO Kyong Shon4, NGHIEM Long D5, ELIMELECH Menachem6   

  1. 1. School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China;
    2. Laboratory for Membrane Materials and Separation Technology, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China;
    3. School of Ocean College, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China;
    4. Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney(UTS), P. O. Box 123, 15 Broadway, NSW 2007, Australia;
    5. Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia;
    6. Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
  • Received:2017-06-29 Revised:2017-07-17 Online:2018-04-05 Published:2017-09-27

Abstract:

The research highlights on forward osmosis (FO) technology at the International Forward Osmosis Symposium (IFOS2016) in Sydney by the end of 2016 are summarized. For FO membrane materials, reduction in the structure parameter of the support layer, rather than the increase of the permeability of the active separation layer, is the key to improve the FO flux. Overall, the improvement in the rejection and antifouling properties is the key factor for high performance membrane. For draw solutes, inorganic salts appear to be the most promising candidates. Osmotic dilution and hybrid processes with other separation technologies for treating high salinity wastewater remain the main potential application. Unfortunately, in a short term, FO based salinity power generation is not competitive to other new energy alternatives.

Key words: forward osmosis, draw solution, osmotic dilution, structure parameter, highly saline wastewater, membranes, selectivity, separation

CLC Number: 

  • TQ202

[1] SIDNEY L, SRINIVASA S. High flow porous membranes for separating water from saline solutions:US3133132[P].1964.
[2] HICKENBOTTOM K L, VANNESTE J, ELIMELECH M, et al. Assessing the current state of commercially available membranes and spacers for energy production with pressure retarded osmosis[J]. Desalination, 2016, 389:108-118.
[3] LOEB S, NORMAN R S. Osmotic power plants[J]. Science, 1975, 189(4203):654.
[4] YIP N Y, ELIMELECH M. Comparison of energy efficiency and power density in pressure retarded osmosis and reverse electrodialysis[J]. Environmental Science & Technology, 2014, 48(18):11002-11012.
[5] THORSEN T, HOLT T. The potential for power production from salinity gradients by pressure retarded osmosis[J]. Journal of Membrane Science, 2009, 335(1/2):103-110.
[6] MCGINNIS R L, ELIMELECH M. Energy requirements of ammonia-carbon dioxide forward osmosis desalination[J]. Desalination, 2007, 207(1/2/3):370-382.
[7] SHAFFER D L, WERBER J R, JARAMILLO H, et al. Forward osmosis:Where are we now?[J]. Desalination, 2015, 356:271-284.
[8] CATH T Y, CHILDRESS A E, ELIMELECH M. Forward osmosis:principles, applications, and recent developments[J]. Journal of Membrane Science, 2006, 281(1/2):70-87.
[9] CHEN G, WANG Z, LONG D N, et al. Treatment of shale gas drilling flowback fluids (SGDFs) by forward osmosis:membrane fouling and mitigation[J]. Desalination, 2015, 366:113-120.
[10] LI X M, ZHAO B, WANG Z, et al. Water reclamation from shale gas drilling flow-back fluid using a novel forward osmosis-vacuum membrane distillation hybrid system[J]. Water Sci. Technol., 2014, 69(5):1036-1044.
[11] SHAFFER D L, ARIAS CHAVEZ L H, BEN-SASSON M, et al. Desalination and reuse of high-salinity shale gas produced water:drivers, technologies, and future directions[J]. Environmental Science & Technology, 2013, 47(17):9569-9583.
[12] VIDIC R D, BRANTLEY S L, VANDENBOSSCHE J M, et al. Impact of shale gas development on regional water quality[J]. Science, 2013, 340(6134):1235009.
[13] LI X, HE T, DOU P, et al. Forward osmosis and forward osmosis membranes[M]//Comprehensive Membrane Science and Engineering. 2nd ed. Oxford:Elsevier, 2017:95-123.
[14] YIP N Y, TIRAFERRI A, PHILLIP W A, et al. High performance thin-film composite forward osmosis membrane[J]. Environmental Science & Technology, 2010, 44(10):3812-3818.
[15] WERBER J R, DESHMUKH A, ELIMELECH M. The critical need for increased selectivity, not increased water permeability, for desalination membranes[J]. Environmental Science & Technology Letters, 2016, 3(4):112-120.
[16] XIAO P, LI J, REN Y W, et al. A comprehensive study of factors affecting fouling behavior in forward osmosis[J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2016, 499:163-172.
[17] CHEN G, LIU R, SHON H K, et al. Open porous hydrophilic supported thin-film composite forward osmosis membrane via co-casting for treatment of high-salinity wastewater[J]. Desalination, 2017, 405:76-84.
[18] SOLOMON M F J, BHOLE Y, LIVINGSTON A G. High flux membranes for organic solvent nanofiltration (OSN)-interfacial polymerization with solvent activation[J]. Journal of Membrane Science, 2012, 423:371-382.
[19] SOLOMON M F J, BHOLE Y, LIVINGSTON A G. High flux hydrophobic membranes for organic solvent nanofiltration (OSN)-interfacial polymerization, surface modification and solvent activation[J]. Journal of Membrane Science, 2013, 434(434):193-203.
[20] PARK M J, PHUNTSHO S, HE T, et al. Graphene oxide incorporated polysulfone substrate for the fabrication of flat-sheet thin-film composite forward osmosis membranes[J]. Journal of Membrane Science, 2015, 493:496-507.
[21] QIN D, LIU Z, SUN D D, et al. A new nanocomposite forward osmosis membrane custom-designed for treating shale gas wastewater[J]. Scientific Reports, 2015, 5:14530.
[22] WIDJOJO N, CHUNG T S, WEBER M, et al. A sulfonated polyphenylenesulfone (sPPSU) as the supporting substrate in thin film composite (TFC) membranes with enhanced performance for forward osmosis (FO)[J]. Chemical Engineering Journal, 2013, 220:15-23.
[23] WEI J, LI Y, SETIAWAN L, et al. Influence of macromolecular additive on reinforced flat-sheet thin film composite pressure-retarded osmosis membranes[J]. Journal of Membrane Science, 2016, 511:54-64.
[24] WERBER J R, OSUJI C O, ELIMELECH M. Materials for next-generation desalination and water purification membranes[J]. Nature Reviews Materials, 2016, 1(5):16018.
[25] GAI J G, GONG X L. Zero internal concentration polarization FO membrane:functionalized graphene[J]. Journal of Materials Chemistry A, 2014, 2(2):425-429.
[26] TIRAFERRI A, KANG Y, GIANNELIS E P, et al. Highly hydrophilic thin-film composite forward osmosis membranes functionalized with surface-tailored nanoparticles[J]. ACS Applied Materials & Interfaces, 2012, 4(9):5044-5053.
[27] HEGAB H M, ELMEKAWY A, BARCLAY T G, et al. Fine-tuning the surface of forward osmosis membranes via grafting graphene oxide:performance patterns and biofouling propensity[J]. ACS Applied Materials & Interfaces, 2015, 7(32):18004-18016.
[28] PERREAULT F, JARAMILLO H, XIE M, et al. Biofouling mitigation in forward osmosis using graphene oxide functionalized thin-film composite membranes[J]. Environmental Science & Technology, 2016, 50(11):5840-5848.
[29] SOROUSH A, MA W, SILVINO Y, et al. Surface modification of thin film composite forward osmosis membrane by silver-decorated graphene-oxide nanosheets[J]. Environmental Science-Nano, 2015, 2(4):395-405.
[30] AZARI S, ZOU L. Fouling resistant zwitterionic surface modification of reverse osmosis membranes using amino acid L-cysteine[J]. Desalination, 2013, 324:79-86.
[31] LU X, ROMERO-VARGAS C S, SHAFFER D L, et al. In situ surface chemical modification of thin-film composite forward osmosis membranes for enhanced organic fouling resistance[J]. Environmental Science & Technology, 2013, 47(21):12219.
[32] SHAFFER D L, JARAMILLO H, LU X, et al. Post-fabrication modification of forward osmosis membranes with a poly(ethylene glycol) block copolymer for improved organic fouling resistance[J]. Journal of Membrane Science, 2015, 490:209-219.
[33] LIU C, LEE J, MA J, et al. Antifouling thin-film composite membranes by controlled architecture of zwitterionic polymer brush layer[J]. Environmental Science & Technology, 2017, 51(4):2161.
[34] PHUNTSHO S, HONG S, ELIMELECH M, et al. Forward osmosis desalination of brackish groundwater:meeting water quality requirements for fertigation by integrating nanofiltration[J]. Journal of Membrane Science, 2013, 436:1-15.
[35] PHUNTSHO S, HONG S, ELIMELECH M, et al. Forward osmosis desalination of brackish groundwater[J]. Journal of Membrane Science, 2013, 436(4):1-15.
[36] KIM J E, PHUNTSHO S, SHON H K. Pilot-scale nanofiltration system as post-treatment for fertilizer-drawn forward osmosis desalination for direct fertigation[J]. Desalination & Water Treatment, 2013, 51(31/32/33):6265-6273.
[37] PHUNTSHO S, SHON H K, MAJEED T, et al. Blended fertilizers as draw solutions for fertilizer-drawn forward osmosis desalination[J]. Environmental Science & Technology, 2012, 46(8):4567.
[38] KIM Y, CHEKLI L, SHIM W G, et al. Selection of suitable fertilizer draw solute for a novel fertilizer-drawn forward osmosis-anaerobic membrane bioreactor hybrid system[J]. Bioresource Technology, 2016, 210:26-34.
[39] PHUNTSHO S, KIM J E, JOHIR M A H, et al. Fertiliser drawn forward osmosis process:pilot-scale desalination of mine impaired water for fertigation[J]. Journal of Membrane Science, 2016, 508:22-31.
[40] PHUNTSHO S, SHON H K, HONG S, et al. Fertiliser drawn forward osmosis desalination:the concept, performance and limitations for fertigation[J]. Reviews in Environmental Science & Bio/technology, 2012, 11(2):147-168.
[41] MCCUTCHEON J R, ELIMELECH M. Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis[J]. Journal of Membrane Science, 2006, 284(1/2):237-247.
[42] MCGINNIS R L, HANCOCK N T, NOWOSIELSKI-SLEPOWRON M S, et al. Pilot demonstration of the NH3/CO2 forward osmosis desalination process on high salinity brines[J]. Desalination, 2013, 312:67-74.
[43] LI X M, XU G, LIU Y, et al. Magnetic Fe3O4 nanoparticles:synthesis and application in water treatment[J]. Nanoscience & Nanotechnology-Asia, 2011, 1:14-24.
[44] LING M M, CHUNG T S, LU X. Facile synthesis of thermosensitive magnetic nanoparticles as "smart" draw solutes in forward osmosis[J]. Chemical Communications, 2011, 47(38):10788-10790.
[45] ZHOU A J, LUO H Y, WANG Q, et al. Magnetic thermoresponsive ionic nanogels as novel draw agents in forward osmosis[J]. RSC Advances, 2015, 5(20):15359-15365.
[46] DEY P, IZAKE E L. Magnetic nanoparticles boosting the osmotic efficiency of a polymeric FO draw agent:effect of polymer conformation[J]. Desalination, 2015, 373:79-85.
[47] YANG H M, SEO B K, LEE K W, et al. Hyperbranched polyglycerol-coated magnetic nanoparticles as draw solute in forward osmosis[J]. Asian Journal of Chemistry, 2014, 26(13):4031-4034.
[48] LI D, ZHANG X, SIMON G P, et al. Forward osmosis desalination using polymer hydrogels as a draw agent:influence of draw agent, feed solution and membrane on process performance[J]. Water Research, 2013, 47(1):209-215.
[49] RAZMJOU A, SIMON G P, WANG H. Effect of particle size on the performance of forward osmosis desalination by stimuli-responsive polymer hydrogels as a draw agent[J]. Chemical Engineering Journal, 2013, 215/216:913-920.
[50] GE Q, SU J, AMY G L, et al. Exploration of polyelectrolytes as draw solutes in forward osmosis processes[J]. Water Research, 2012, 46(4):1318-1326.
[51] OU R W, WANG Y Q, WANG H T, et al. Thermo-sensitive polyelectrolytes as draw solutions in forward osmosis process[J]. Desalination, 2013, 318:48-55.
[52] TIAN E L, HU C B, QIN Y, et al. A study of poly (sodium 4-styrenesulfonate) as draw solute in forward osmosis[J]. Desalination, 2015, 360:130-137.
[53] QI S R, LI Y, WANG R, et al. Towards improved separation performance using porous FO membranes:the critical roles of membrane separation properties and draw solution[J]. Journal of Membrane Science, 2016, 498:67-74.
[54] NGUYEN H T, NGUYEN N C, CHEN S S, et al. Innovation in draw solute for practical zero salt reverse in forward osmosis desalination[J]. Industrial & Engineering Chemistry Research, 2015, 54(23):6067-6074.
[55] ZHAO D L, WANG P, ZHAO Q P, et al. Thermoresponsive copolymer-based draw solution for seawater desalination in a combined process of forward osmosis and membrane distillation[J]. Desalination, 2014, 348:26-32.
[56] STONE M L, RAE C, STEWART F F, et al. Switchable polarity solvents as draw solutes for forward osmosis[J]. Desalination, 2013, 312:124-129.
[57] MELCHELS F P, FEHR I, REITZ A S, et al. Initial design and physical characterization of a polymeric device for osmosis-driven delayed burst delivery of vaccines[J]. Biotechnology and Bioengineering, 2015, 112(9):1927-1935.
[58] CHEN G, WANG Z, LI X M, et al. Concentrating underground brine by FO process:influence of membrane types and spacer on membrane scaling[J]. Chemical Engineering Journal, 2016, 285:92-100.
[59] WANG W D, ZHANG Y T, ESPARRA-ALVARADO M, et al. Effects of pH and temperature on forward osmosis membrane flux using rainwater as the makeup for cooling water dilution[J]. Desalination, 2014, 351:70-76.
[60] ZHAO S, ZOU L. Effects of working temperature on separation performance, membrane scaling and cleaning in forward osmosis desalination[J]. Desalination, 2011, 278(1):157-164.
[61] BOO C, ELIMELECH M, HONG S. Fouling control in a forward osmosis process integrating seawater desalination and wastewater reclamation[J]. Journal of Membrane Science, 2013, 444:148-156.
[62] YANGALI-QUINTANILLA V, LI Z, VALLADARES R, et al. Indirect desalination of Red Sea water with forward osmosis and low pressure reverse osmosis for water reuse[J]. Desalination, 2011, 280:160-166.
[63] BERKELAAR R P, DIETRICH E, KIP G A M, et al. Exposing nanobubble-like objects to a degassed environment[J]. Soft Matter, 2014, 10(27):4947-4955.
[64] CATH T Y. Osmotically and thermally driven membrane processes for enhancement of water recovery in desalination processes[J]. Desalination and Water Treatment 2010, 15: 279-286.
[65] WANG X H, CHANG V W C, TANG C Y. Osmotic membrane bioreactor (OMBR) technology for wastewater treatment and reclamation:advances, challenges, and prospects for the future[J]. Journal of Membrane Science, 2016, 504:113-132.
[66] HEY T, ZAREBSKA A, BAJRAKTARI N, et al. Influences of mechanical pretreatment on the non-biological treatment of municipal wastewater by forward osmosis[J]. Environ. Technol., 2017, 38(18):2295-2304.
[67] CHRISTOVA-BOAL D, EDEN R E, MCFARLANE S. An investigation into greywater reuse for urban residential properties[J]. Desalination, 1996, 106(1):391-397.
[68] LUO W, HAI F I, PRICE W E, et al. Evaluating ionic organic draw solutes in osmotic membrane bioreactors for water reuse[J]. Journal of Membrane Science, 2016, 514:636-645.
[69] LUO W, PHAN H V, XIE M, et al. Osmotic versus conventional membrane bioreactors integrated with reverse osmosis for water reuse:Biological stability, membrane fouling, and contaminant removal[J]. Water Research, 2017, 109:122-134.
[70] ANSARI A J, HAI F I, PRICE W E, et al. Phosphorus recovery from digested sludge centrate using seawater-driven forward osmosis[J]. Separation and Purification Technology, 2016, 163:1-7.
[71] ANSARI A J, HAI F I, PRICE W E, et al. Forward osmosis as a platform for resource recovery from municipal wastewater-a critical assessment of the literature[J]. Journal of Membrane Science, 2017, 529:195-206.
[72] DESJARDINS J. All U.S. energy consumption in a giant diagram[EB/OL].[2017-08-28]. http://www.visualcapitalist.com/u-s-energy-consumption-one-giant-diagram/.
[73] STRAUB A P, DESHMUKH A, ELIMELECH M. Pressure-retarded osmosis for power generation from salinity gradients:is it viable?[J]. Energy & Environmental Science, 2016, 9(1):31-48.
[74] LOGAN B E, ELIMELECH M. Membrane-based processes for sustainable power generation using water[J]. Nature, 2012, 488(7411):313-319.

[1] TIAN Tao, LIU Bing, SHI Meisheng, AN Yaxiong, MA Jun, ZHANG Yanjun, XU Xinxi, ZHANG Donghui. Experiment and simulation of PSA process for small oxygen generator with two adsorption beds [J]. CIESC Journal, 2019, 70(3): 969-978.
[2] ZENG Shaojuan, SHANG Dawei, YU Min, CHEN Hao, DONG Haifeng, ZHANG Xiangping. Applications and perspectives of NH3 separation and recovery with ionic liquids [J]. CIESC Journal, 2019, 70(3): 791-800.
[3] WANG Lei, FANG Guiying, YANG Qingyuan. Performance of metal-organic frameworks for CO2 capture from large-scale computational screening [J]. CIESC Journal, 2019, 70(3): 1135-1143.
[4] HU Song, LI Jinlong, LI Mujin, YANG Weisheng. Extractive refining process for production of propylene oxide with high purification [J]. CIESC Journal, 2019, 70(2): 670-677.
[5] ZHANG Zhigang, ZHANG Debiao, ZHANG Qinqin, ZHANG Tao, YANG Ru, LI Wenxiu. Screening of ionic liquids for separation of ethyl acetate-acetonitrile azeotrope based on COSMO-RS [J]. CIESC Journal, 2019, 70(1): 146-153.
[6] WANG Cailin, GU Shuaiwei, LI Yuxing, HU Qihui, TENG Lin, WANG Jinghan, MA Hongtao, ZHANG Datong. Experimental study on foaming characteristics of CO2-crude oil mixture [J]. CIESC Journal, 2019, 70(1): 251-260.
[7] WANG Zizong, LIU Hongqian, WANG Jiming. Research and optimization of separation technology of methanol to propylene [J]. CIESC Journal, 2019, 70(1): 136-145.
[8] LI Changhui, MENG Ling, GUI Xia, YUN Zhi. A method of extraction and separation of oridonin [J]. CIESC Journal, 2018, 69(S2): 240-245.
[9] HE Ting, LIN Wensheng. Nitrogen expansion liquefaction and separation process for natural gas with high ethane content [J]. CIESC Journal, 2018, 69(S2): 226-231.
[10] HOU Mengjie, ZHANG Xinru, WANG Yonghong, LI Jinping, LIU Chengcen, LING Jun. Preparation of PVAm mixed matrix membranes by incorporating halloysite nanotubes for CO2/N2 separation [J]. CIESC Journal, 2018, 69(9): 4106-4113.
[11] YAO Yingying, GUO Li, HU Zhongqiu, QUAN Qu, DU Dongyun. Separation of copper and arsenic in copper smelting dust by Na2S-NaOH leaching assisted with ultrasound method [J]. CIESC Journal, 2018, 69(9): 3983-3992.
[12] ZHANG Haiyong, LIU Qian, LIU Xingkun, ZHANG Xianglan, XIE Qiang, WANG Yonggang. Phase equilibrium and separation of n-dodecane-toluene-phenol in low temperature coal tar [J]. CIESC Journal, 2018, 69(8): 3479-3487.
[13] LI Jia, GU Jinghua, YIN Wenjie, LI Zeyao. Preparation of ZIF-8 membranes on ZnO modified stainless steel nets [J]. CIESC Journal, 2018, 69(8): 3724-3731.
[14] PAN Jiefeng, ZHENG Yu, DING Jincheng, SHI Wenhui, SHEN Jiangnan, GAO Congjie. Monovalent anions removal by capacitive deionization integrated with monovalent anion permselective exchange membrane [J]. CIESC Journal, 2018, 69(8): 3502-3508.
[15] FENG Lele, WANG Jingyu, WU Yuxin, ZHANG Hai, ZHANG Man, LÜ Junfu, YUE Guangxi. Experimental and numerical investigation on effect of particle characteristics on performance of plate-type impact separator [J]. CIESC Journal, 2018, 69(8): 3348-3355.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] CAO Xing,DU Wenjing,CHENG Lin. Analyses on flow and heat transfer performance and entropy generation of heat exchanger with continuous helical baffles[J]. CIESC Journal, 2012, 63(8): 2375 -2382 .
[2] ZHANG Lanhe,LI Jun,GUO Jingbo,JIA Yanping,ZHANG Haifeng. Effect of EPS on activated sludge flocculation Ability , Settleability and surface properties[J]. CIESC Journal, 2012, 63(6): 1865 -1871 .
[3] CHEN Weidong, SUN Yan. EFFECT OF ADSORPTION DENSITY ON PORE DIFFUSIVITY OF PROTEINS IN ION EXCHANGER[J]. CIESC Journal, 2003, 54(2): 215 -220 .
[4] ZHOU Xinjian, CHEN Tingkuan. DETERMINATION OF FLOW RATE COEFFICIENT OF JET EXHAUSTING ATOMIZATION NOZZLE[J]. CIESC Journal, 2002, 53(10): 1092 -1094 .
[5] SUN Qinglei, LI Wen, LI Baoqing. RELATIONSHIP BETWEEN VOLATILE YIELD AND PETROGRAPHIC ANALYSIS DURING PYROLYSIS OF SHENMU MACERALS[J]. CIESC Journal, 2003, 54(2): 269 -272 .
[6] LIU Tang, QIAN Weizhong, WANG Zhanwen, WEI Fei, JIN Yong, LI Juncheng, LI Yongdan. PREPARATION OF HYDROGEN AND CARBON NANOTUBES via METHANE DECOMPOSITION IN FLUIDIZED-BED REACTOR[J]. CIESC Journal, 2003, 54(11): 1614 -1618 .
[7] ZHAO Zongbin, LI Wen, LI Baoqing. EFFECT OF MINERAL MATTER ON RELEASE OF NO DURING COAL CHAR COMBUSTION[J]. CIESC Journal, 2003, 54(1): 100 -106 .
[8] LI Rui, XU Chunjian, ZENG Aiwu, ZHOU Ming. CFD SIMULATION OF DISTILLATION TRAY BASED ON THREE DIMENSIONAL TWO-LAYER MODEL[J]. CIESC Journal, 2003, 54(2): 159 -163 .
[9] ZHAN Shuiqing1,ZHOU Jiemin1,WU Ye2,LI Yuan1,LIANG Yannan1,YANG Ying1. Dynamic measurement of thermophysical properties of molten salt and error correction method[J]. CIESC Journal, 2012, 63(8): 2341 -2347 .
[10] HAN Jiabin, WANG Jingkang. MEASUREMENT AND CORRELATION OF SOLUBILITY OF CAFFEINE IN WATER AND ETHANOL[J]. CIESC Journal, 2004, 55(1): 125 -128 .