CIESC Journal ›› 2018, Vol. 69 ›› Issue (1): 389-395.doi: 10.11949/j.issn.0438-1157.20170830

Previous Articles     Next Articles

Effects of drag model and turbulence model on simulation of air-lift internal-loop reactor

ZHANG Jiabao1,2, CUI Lijie1, YANG Ning2   

  1. 1 School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
    2 State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2017-06-28 Revised:2017-08-03 Online:2018-01-05 Published:2017-08-07
  • Contact: 10.11949/j.issn.0438-1157.20170830 E-mail:nyang@ipe.ac.cn
  • Supported by:

    supported by the National Key Research and Development Program of China (2017YFB0602500) and the National Natural Science Foundation of China (91434121, 91634203).

Abstract:

The influence of drag models and turbulence models on the hydrodynamic parameters in an air-lift internal-loop reactor is evaluated. Drag models determine the existence of gas in downcomer, and drag models and turbulence models jointly determine the accuracy of the simulation of gas holdup. Using uniform size bubbles, the Schiller-Naumann, Tomiyama, Grace and Ishii-Zuber drag models are only suitable for lower superficial gas velocity, and there is no gas in downcomer. The capability of DBS-Local drag model was confirmed. Compared with the other four drag models, only DBS-Local drag model can predict the existence of gas in downcomer. DBS-Local drag model combining with the standard k-ε mixture turbulence model can well predict gas holdup, and combining with RNG k-ε dispersed turbulence model can better predict liquid velocity.

Key words: CFD, internal-loop reactor, gas-liquid flow, drag model, turbulence model, gas holdup

CLC Number: 

  • TQ021.1

[1] 张伟鹏. 气液环流反应器中宏观混合及微观混合的研究[D]. 北京:中国科学院大学, 2013. ZHANG W P. Investigation on macro-and micro-mixing in gas-liquid loop reactor[D]. Beijing:University of Chinese Academy of Sciences, 2013.
[2] LU W J, HWANG S J, CHANG C M. Liquid velocity and gas holdup in three-phase internal loop airlift reactors with low-density particles[J]. Chemical Engineering Science, 1995, 50(8):1301-1310.
[3] BELLO R A, RINSONOB C W, MOOYOUNG M. Gas holdup and overall volumetric oxygen transfer coefficient in airlift contactors[J]. Biotechnology & Bioengineering, 1985, 27(3):369-81.
[4] FU C C, FAN L S, WU W T. Flow regime transitions in an internal-loop airlift reactor[J]. Chemical Engineering & Technology, 2010, 30(8):1077-1082.
[5] 祝俊丽. 气升式内环流反应器流体力学性能实验研究及数值模拟[D]. 杭州:浙江工业大学, 2005. ZHU J L. Hydrodynamic studies and numerical simulation of an internal airlift loop reactor[D]. Hangzhou:Zhejiang University of Technology, 2005.
[6] HEIJNEN J J, HOLS J, VAN DER LANS R G J M, et al. A simple hydrodynamic model for the liquid circulation velocity in a full-scale two-and three-phase internal airlift reactor operating in the gas recirculation regime[J]. Chemical Engineering Science, 1997, 52(15):2527-2540.
[7] QIE S Y, GAO F, LIU C, et al. Effects of different draft baffles on the hydrodynamics in internal-loop airlift reactors[J]. Journal of Tianjin University, 2015, 21(5):446-452.
[8] SIMCIK M, MOTA A, RUZICKA M C, et al. CFD simulation and experimental measurement of gas holdup and liquid interstitial velocity in internal loop airlift reactor[J]. Chemical Engineering Science, 2011, 66(14):3268-3279.
[9] 王铁峰. 气液(浆)反应器流体力学行为的实验研究和数值模拟[D]. 北京:清华大学, 2004. WANG T F. Experimental study and numerical simulation on the hydrodynamics in gas-liquid (slurry) reactors[D]. Beijing:Tsinghua University, 2004.
[10] 李飞, 王保国, 陈筛林, 等. 新型多级环流反应器流体力学研究[J]. 化学工程, 2006, 34(2):37-40. LI F, WANG B G, CHEN S L, et al. Study on the hydrodynamics in multi stage loop reactor[J]. Chemical Engineering(China), 2006, 34(2):37-40.
[11] SUN S, LIU C, WEI W, et al. Hydrodynamics of an annulus airlift reactor[J].Powder technology, 2006, 162(3):201-207
[12] 徐春燕, 池春榕, 刘祖文, 等. 气升式反应器内流动与传质研究进展[J]. 有色金属科学与工程, 2016, 7(5):110-118. XU C Y, CHI C Y, LIU Z W, et al. Research status of flow and mass transfer of air lift reactor[J]. Nonferrous Metals Science and Engineering, 2016, 7(5):110-118.
[13] 林文才, 毛在砂. 气升式环流反应器中的流体动力学研究(Ⅱ):实验及模型结果分析[J]. 化工学报, 1995, 46(3):290-297. LIN W C, MAO Z S. A fluid dynamics model for air-lift loop reactors (Ⅱ):Analyses on experimental data and calculated results[J]. Journal of Chemical Industry and Engineering(China), 1995, 46(3):290-297.
[14] 沈荣春, 束忠明, 黄发瑞. 气体分布器结构对气升式环流反应器内气液两相流动的影响[J]. 化学反应工程与工艺, 2007, 23(5):422-429. SHEN R C, SHU Z M, HUANG F R. Effect of gas sparger geometry on gas-liquid two-phase flow in an airlift loop reactor[J]. Chemical Reaction Engineering and Technology, 2007, 23(5):422-429.
[15] MORADI S, RAJABI Z, MOHAMMADI M, et al. 3 dimensional hydrodynamic analysis of concentric draft tube airlift reactors with different tube diameters[J]. Mathematical & Computer Modelling An International Journal, 2013, 57(5/6):1184-1189.
[16] 吴宗应, 杨宁. 曳力模型对模拟鼓泡塔气含率的影响[J]. 化工学报, 2010, 61(11):2817-2822. WU Z Y, YANG N. Effect of drag models on simulation of gas hold-up in bubble columns[J]. CIESC Journal, 2010, 61(11):2817-2822.
[17] HUANG Q, YANG C, YU G, et al. Sensitivity study on modeling an internal airlift loop reactor using a steady 2D two-fluid model[J]. Chemical Engineering & Technology, 2010, 31(12):1790-1798.
[18] 张涛. 内循环流化床反应器流动传质特性的计算流体力学模拟研究[D]. 广州:华南理工大学, 2012. ZHANG T. Simulation of mass transfer and hydrodynamic characteristics in internal loop fluidized bed reactor by computational fluid dynamics method[D]. Guangzhou:South China University of Technology, 2012.
[19] XU T T, JIANG X D, YANG N, et al. CFD simulation of internal-loop airlift reactor using EMMS drag model[J]. Particuology, 2015, 19(2):124-132.
[20] JIANG X D, YANG N, YANG B L. Computational fluid dynamics simulation of hydrodynamics in the riser of an external loop airlift reactor[J]. Particuology, 2016, 27(4):95-101.
[21] 许婷婷. DBS曳力模型与湍流模型对气液CFD模拟的影响[D]. 北京:中国科学院大学, 2014. XU T T. Influence of DBS drag model and turbulence models on CFD simulation of gas-liquid flow[D]. Beijing:University of Chinese Academy of Sciences, 2014.
[22] YANG N, CHEN J H, ZHAO H, et al. Explorations on the multi-scale flow structure and stability condition in bubble columns[J]. Chemical Engineering Science, 2007, 62(24):6978-6991.
[23] YANG N, CHEN J H, GE W, et al. A conceptual model for analyzing the stability condition and regime transition in bubble columns[J]. Chemical Engineering Science, 2010, 65(1):517-526.
[24] YANG N, WU Z Y, CHEN J H, et al. Multi-scale analysis of gas-liquid interaction and CFD simulation of gas-liquid flow in bubble columns[J]. Chemical Engineering Science, 2011, 66(14):3212-3222.
[25] YANG N. A multi-scale framework for CFD modelling of multi-phase complex systems based on the EMMS approach[J]. Progress in Computational Fluid Dynamics, 2012, 12(2/3):220-229.
[26] XIAO Q, YANG N, LI J H. Stability-constrained multi-fluid CFD models for gas-liquid flow in bubble columns[J]. Chemical Engineering Science, 2013, 100(100):279-292.
[27] SCHILLER L, NAUMANN A. A drag coefficient correlation[J]. Vdi Zeitung, 1935, 77:318-320.
[28] TOMIYAMA A. Struggle with computational bubble dynamics[J]. Multiphase Science and Technology, 1998, 10(4):369-405.
[29] ISHⅡ M, ZUBER N. Drag coefficient and relative velocity in bubbly, droplet or particulate flows[J]. AIChE Journal, 1979, 25(5):843-855.
[30] GRACE J R. Shapes and velocities of single drops and bubbles moving freely through immiscible liquids[J]. Transactions of the Institution of Chemical Engineers, 1976, 54(3):167-173.

[1] WANG Shunhao, ZHU Wenli, HU Zhenggen, ZHOU Rui, YU Liu, WANG Bin, ZHANG Xiaobin. Numerical simulation and experimental validation of evaporation characteristics of scaled liquid hydrogen tank [J]. CIESC Journal, 2019, 70(3): 840-849.
[2] WU Xuan, LI Xiaorui, MA Jun, QIN Mengzhu, ZHOU Yahui, LI Haiguang. Behavior characteristics of bubble formation under various nozzle immersion modes [J]. CIESC Journal, 2019, 70(3): 901-912.
[3] NI Chengzhen, DU Wenli, HU Guihua. Impact of turbulence model in coupled simulation of ethylene cracking furnace [J]. CIESC Journal, 2019, 70(2): 450-459.
[4] ZHANG Huahai, WANG Tiefeng. Generality of CFD-PBM coupled model for simulations of gas-liquid bubble column [J]. CIESC Journal, 2019, 70(2): 487-495.
[5] XIONG Pan, YAN Shuguang, LIU Weiyin. Structure optimization of cyclone based on response surface method [J]. CIESC Journal, 2019, 70(1): 154-160.
[6] LIU Yingjie, ZHU Jesse. Flow behaviors in bubble-driven liquid-solid fluidized-bed adopting binary particles [J]. CIESC Journal, 2019, 70(1): 91-98.
[7] LI Han, PU Wenhao, YANG Ning, MAO Yanqin, YUE Chen, ZHANG Qi. Experimental study on air-paraffin direct contact heat transfer characteristics [J]. CIESC Journal, 2018, 69(9): 3792-3798.
[8] GU Xin, LUO Yuankun, XIONG Xiaochao, WANG Ke, TAO Zhilin. Influence of twisty flow heat exchanger's structural parameters on flow field and temperature field [J]. CIESC Journal, 2018, 69(8): 3390-3397.
[9] JING Jiaqiang, YIN Ran, MA Xiaoliang, SUN Jie, WU Xi. Drag characteristics of air-mixed heavy oil in horizontal pipes [J]. CIESC Journal, 2018, 69(8): 3398-3407.
[10] HE Denghui, CHEN Senlin, BAI Bofeng. New model for measuring stratified gas-liquid flow by Chisholm-model-based V-cone flowmeter [J]. CIESC Journal, 2018, 69(8): 3428-3435.
[11] HU Rentao, REN Libo, WANG Dewu, LIU Yan, ZHANG Shaofeng. Numerical simulation of fully developed liquid-solid flow in vertical narrow channel [J]. CIESC Journal, 2018, 69(8): 3408-3417.
[12] CHEN Guoqi, SUN Jianjun, SUN Dianfeng, MA Chenbo. Performance analysis of double-end self-pumping mechanical seal for main coolant pump of sodium-cooled fast reactor [J]. CIESC Journal, 2018, 69(8): 3565-3576.
[13] NIU Shouzi, WU Haitao, XU Ying, LI Jianli, ZHANG Tao. Compensation method for slug flow measurement in shale gas well using Venturi tube [J]. CIESC Journal, 2018, 69(8): 3364-3372.
[14] JIANG Peng, WANG Kun, QIAO Min, LI Junfeng, XUE Yunxiang, HUANG Weixing. Pressure drop of gas-liquid two phases parallelly flowing down through a stacked sieve plate packing [J]. CIESC Journal, 2018, 69(8): 3373-3382.
[15] TAO Jinliang, HUANG Jiangang, XIAO Hang, YANG Chao, HUANG Qingshan. Influences of interstage height and superficial gas velocity in multistage internal airlift loop reactor on performance of mixing and mass transfer [J]. CIESC Journal, 2018, 69(7): 2878-2889.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] CAO Xing,DU Wenjing,CHENG Lin. Analyses on flow and heat transfer performance and entropy generation of heat exchanger with continuous helical baffles[J]. CIESC Journal, 2012, 63(8): 2375 -2382 .
[2] ZHANG Lanhe,LI Jun,GUO Jingbo,JIA Yanping,ZHANG Haifeng. Effect of EPS on activated sludge flocculation Ability , Settleability and surface properties[J]. CIESC Journal, 2012, 63(6): 1865 -1871 .
[3] CHEN Weidong, SUN Yan. EFFECT OF ADSORPTION DENSITY ON PORE DIFFUSIVITY OF PROTEINS IN ION EXCHANGER[J]. CIESC Journal, 2003, 54(2): 215 -220 .
[4] ZHOU Xinjian, CHEN Tingkuan. DETERMINATION OF FLOW RATE COEFFICIENT OF JET EXHAUSTING ATOMIZATION NOZZLE[J]. CIESC Journal, 2002, 53(10): 1092 -1094 .
[5] SUN Qinglei, LI Wen, LI Baoqing. RELATIONSHIP BETWEEN VOLATILE YIELD AND PETROGRAPHIC ANALYSIS DURING PYROLYSIS OF SHENMU MACERALS[J]. CIESC Journal, 2003, 54(2): 269 -272 .
[6] LIU Tang, QIAN Weizhong, WANG Zhanwen, WEI Fei, JIN Yong, LI Juncheng, LI Yongdan. PREPARATION OF HYDROGEN AND CARBON NANOTUBES via METHANE DECOMPOSITION IN FLUIDIZED-BED REACTOR[J]. CIESC Journal, 2003, 54(11): 1614 -1618 .
[7] ZHAO Zongbin, LI Wen, LI Baoqing. EFFECT OF MINERAL MATTER ON RELEASE OF NO DURING COAL CHAR COMBUSTION[J]. CIESC Journal, 2003, 54(1): 100 -106 .
[8] LI Rui, XU Chunjian, ZENG Aiwu, ZHOU Ming. CFD SIMULATION OF DISTILLATION TRAY BASED ON THREE DIMENSIONAL TWO-LAYER MODEL[J]. CIESC Journal, 2003, 54(2): 159 -163 .
[9] ZHAN Shuiqing1,ZHOU Jiemin1,WU Ye2,LI Yuan1,LIANG Yannan1,YANG Ying1. Dynamic measurement of thermophysical properties of molten salt and error correction method[J]. CIESC Journal, 2012, 63(8): 2341 -2347 .
[10] HAN Jiabin, WANG Jingkang. MEASUREMENT AND CORRELATION OF SOLUBILITY OF CAFFEINE IN WATER AND ETHANOL[J]. CIESC Journal, 2004, 55(1): 125 -128 .