CIESC Journal ›› 2017, Vol. 68 ›› Issue (10): 3733-3738.doi: 10.11949/j.issn.0438-1157.20170315

Previous Articles     Next Articles

Heat transfer of staggered three-dimensional externally finned tube

GE Ming1, ZHAO Lijie2, DAI Weibao1, CAI Pei1, SHU Shaoxin3, YANG Hairui4, LÜ Junfu4   

  1. 1 Guodian Science and Technology Research Institute, Nanjing 210031, Jiangsu, China;
    2 Beijing Tera Solar Photothermal Technologies Co., Ltd., Beijing 101102, China;
    3 Hi-Tech(Jiangsu) Research & Science Co., Ltd., Wuxi 214215, Jiangsu, China;
    4 Department of Thermal Engineering, Tsinghua University, Beijing 100084, China
  • Received:2017-03-29 Revised:2017-08-31 Online:2017-10-05 Published:2017-09-13
  • Supported by:

    supported by the National Key Research and Development Program of China(2016YFB0600203).

Abstract:

Heat transfer test rig had been built with pure water as heat transfer medium and air as heat transfer gas.Heat transfer experimental investigation on circle tube and staggered three-dimensional externally finned tube had been carried out.The building of test rig and experimental procedure had been introduced in details accompany with the theoretical model being derived for solving heat transfer coefficients.It was found that due to the special structure of staggered three-dimensional externally finned tube,its overall heat transfer coefficient is 3.1 times bigger than that of circular tube.By a linear regressive method,the experimental data were processed.The criterion relations of heat transfer were obtained and compared with circular tube.The results could provide reference for the industrial application.Finally,the deviation of the experimental data is analyzed and the result is believable.

Key words: staggered three-dimensional externally finned tube, enhanced heat transfer, overall heat transfer, experimental research

CLC Number: 

  • TQ021.3

[1] 赵斌, 赵利杰, 王庆功, 等. H型鳍片管结构参数选取办法[J]. 化工学报, 2015, 66(12):4751-4757. ZHAO B, ZHAO L J, WANG Q G. et al. Selection of structure parameters for H-finned tube[J]. CIESC Journal, 2015, 66(12):4751-4757.
[2] 赵利杰. H型鳍片管传热与流动特性研究[D]. 唐山:华北理工大学, 2016:1-70. ZHAO L J. Study on heat transfer and flow characteristics of H-type finned tube[D]. Tangshan:North China University of Science and Technology, 2016:1-70.
[3] 赵斌, 赵利杰, 高明非, 等. 不同布置H型鳍片管束流动传热准则关联式[J]. 煤炭学报, 2017, 42(3):782-788. ZHAO B, ZHAO L J, GAO M F, et al. Correlations of heat transfer and flow characteristics of H-type finned tube bank with different arrangements[J]. Journal of China Coal Society, 2017, 42(3):782-788.
[4] 夏国栋, 崔珍珍, 翟玉玲, 等. 长菱形微针肋热沉的流动与换热特性[J]. 中国石油大学学报, 2014, 38(2):130-134. XIA G D, CUI Z Z, ZHAI Y L, et al. Flow and heat transfer characteristics for long-diamond shaped micro pin fin[J]. Journal of China University of Petroleum, 2014, 38(2):130-134.
[5] 夏国栋, 李宴君, 孔凡金. 流体横掠方形微针肋阵列热沉的传热特性[J]. 工程热物理学报, 2008, 29(4):628-630. XIA G D, LI Y J, KONG F J. Heat transfer characteristics of a diamond-shaped pin fin micro heat sink[J]. Journal of Engineering Thermophysics, 2008, 29(4):628-630.
[6] 周明正, 夏国栋, 周利军, 等. 水滴型微针肋流动与传热特性数值研究[J]. 热科学与技术, 2011, 10(1):25-31. ZHOU M Z, XIA G D, ZHOU L J, et al. Numerical study if flow and heat transfer for droplet type fin-fin heat sink[J]. Journal of Thermal Science and Technology, 2011, 10(1):25-31.
[7] 夏国栋, 罗光亮, 李宴君, 等. 流体横掠圆形微针肋热沉流动与传热特性[J]. 工程热物理学报, 2009, 30(4):621-624. XIA G D, LUO G L, LI Y J, et al. Flow and heat transfer characteristics across circular-shaped micro pin fin heat sinks[J]. Journal of Engineering Thermophysics, 2009, 30(4):621-624.
[8] 周明正, 夏国栋, 柴磊, 等. 流体横掠水滴形微针肋热沉流动和传热特性[J]. 航空动力学报, 2012, 27(12):2681-2686. ZHOU M Z, XIA G D, CHAI L, et al. Flow and heat transfer characteristics of drop-shaped micro pin-fin heat sinks with cross flow[J]. Journal of Aerospace Power, 2012, 27(12):2681-2686.
[9] 金晶, 冯明志. 针形肋管束的传热特性和阻力特性的实验研究[J]. 山东工业大学学报, 2000, 30(1):47-51. JIN J, FENG M Z. Experimental investigation on heat transfer and pressure drop of pin-shaped-fin tube bank[J]. Journal of Shangdong University of Technology, 2000, 30(1):47-51.
[10] 何春霞, 王厚华, 廖光亚, 等. 三维外肋管的自然对流换热特性的实验研究[J]. 重庆建筑大学学报, 2003, 25(3):59-62. HE C X, WANG H H, LIAO G Y, et al. Experiment research on heat transfer of external three-dimensional finned tube in free convection[J]. Journal of Chongqing Jianzhu University, 2003, 25(3):59-62.
[11] 吴伟栋, 王厚华, 廖光亚, 等. 空气横掠叉排三维外肋管束换热及流阻特性的实验研究[J]. 重庆建筑大学学报, 2002, 24(3):53-57. WU W D, WANG H H, LIAO G Y, et al. Heat transfer and firction characteristics for cross-flow over staggered external three-dimensional finned tube banks[J]. Journal of Chongqing Jianzhu University, 2002, 24(3):53-57.
[12] 吴伟栋. 空气横掠叉排三维外肋管束换热及流阻特性的实验研究[D]. 重庆:重庆大学, 2002. WU W D. Heat transfer and firction characteristics for cross-flow over staggered external three-dimensional finned tube banks[D]. Chongqing:Chongqing University, 2002.
[13] 廖强, 朱恂, 辛明道. 水平三维肋管管外凝结换热实验与分析[J]. 工程热物理学报, 2004, 25(1):103-105. LIAO Q, ZHU X, XIN M D. Measurements and modeling for condensation heat transfer on horizontal three-dimensional finned[J]. Journal of Engineering Thermophysics, 2004, 25(1):103-105.
[14] 朱恂, 李刚, 廖强, 等. 水平三维肋管外含不凝性气体的水蒸气凝结换热的实验研究[J]. 动力工程, 2006, 26(5):694-698. ZHU X, LI G, LIAO Q, et al. Experimental investigation of condensation heat transfer of non-condensable gas containing steam on 3-dimensionally finned tibes, horizontally positioned[J]. Journal of Power Engineering, 2006, 26(5):694-698.
[15] ALIAGA D A, LAMBD J P, KLEIN D E. Convection heat transfer distribution over plates with square ribes from infrared thermography measurements[J]. International Journal of Heat Mass Transfer, 1994, 37(3):363-374.
[16] CHYU M K, NATARAJAN V. Heat transfer on the surface of three-dimensional protruding elements[J]. International Journal of Heat Mass Transfer, 1996, 39(14):2925-2935.
[17] JUBRAN B A, HAMDAM M A, ABDUALH R M. Ehanced heat transfer missing pin and optimization for cylindrical pin fin arrays[J]. Journal of Heat Transfer, 1993, 115(3):576-583.
[18] 胡振军, 神家锐. 离散倾斜肋的传热强化及流动特性[J]. 工程热物理学报, 1995, 16(3):327-332. HU Z J, SHEN J R. Heat transfer enhancement and flow characteristics of a surface with discrete ribs[J]. Journal of Engineering Thermophysics, 1995, 16(3):327-332.
[19] 于勇, 田志凌. 中国工程材料大典:第三卷钢铁材料工程(下)[M]. 北京:化学工业出版社, 2006:507-543. YU Y, TIAN Z L. China Material Engineering Dictionary:Volume Ⅲ Steel Material(Two)[M]. Beijing:Chemical Industry Press, 2006:507-543.
[20] 葛铭, 赵利杰, 舒少辛, 等. 接触热阻对双H型鳍片管传热系数的影响[J]. 中国电力, 2017, 50(2):57-63. GE M, ZHAO L J, SHU S X, et al. Impact of thermal contact resistance on heat transfer coefficient of double H-type finned tube[J]. Electric Power, 2017, 50(2):57-63.
[21] 姚寿广, 朱德书, 陈育平, 等. 针肋套管换热元件的传热及阻力性能实验研究与分析[J]. 中国电机工程学报, 2000, 20(10):71-79. YAO S G, ZHU D S, CHEN Y P, et al. Experimental research on heat transfer and flow friction loss of pin-fin casing tube heat exchanger unit[J]. Proceedings of the CSEE, 2000, 20(10):71-79.
[22] 杨世铭, 陶文铨. 传热学[M]. 北京:高等教育出版社, 2006:57-63. YANG S M, TAO W Q. Heat Transfer[M]. Beijing:Higher Education Press, 2006:57-63.
[23] 赵红霞, 匙明申, 管宁. 流体横掠顺排和错排方形微针肋阵列的流动传热与熵产分析[J]. 山东科学, 2005, 28(1):12-19. ZHAO H X, CHI M S, GUAN N. Analysis of flow heat transfer and entropy generation for flow across inline and staggered square micro pins in a channel[J]. Shangdong Science, 2005, 28(1):12-19.

[1] HUANG Jin, LI Xiaopeng, WANG Ting, HU Yanxin, SHENG Xinxin. Heat transfer performance of copper surface treatment MWCNTs/PA based on composites [J]. CIESC Journal, 2018, 69(7): 2956-2963.
[2] HAN Huaizhi, CHEN Xin, HU Yiran, WANG Kunfang, CUI Yunlei, YU Ruitian. Numerical study on flow and heat transfer characteristics in corrugated tube with loose-fit twisted tape insert [J]. CIESC Journal, 2018, 69(4): 1374-1384.
[3] WANG Qian, HAN Huaizhi, LI Bingxi. Flow and heat transfer mechanism of corrugated plate heat exchanger [J]. CIESC Journal, 2017, 68(S1): 71-82.
[4] HAN Huaizhi, SONG Fuyuan, ZHANG Guolei, YANG Longbin, LI Yanjun. Analysis on compound heat transfer enhancement performance in outward convex corrugated tube with twisted insert [J]. CIESC Journal, 2016, 67(S1): 195-202.
[5] ZHENG Baojun, YIN Yonggao, ZHANG Xiaosong. A novel compressed air drying method based on pressurized liquid desiccant dehumidifier and experimental verification [J]. CIESC Journal, 2014, 65(z2): 52-57.
[6] MO Dongchuan, ZHANG Hui, LÜ Shushen. Pool boiling experiment on TiO2 nanotube array surface [J]. CIESC Journal, 2014, 65(S1): 308-315.
[7] LENG Xueli, QIU Yan, TIAN Maocheng, LI Wei. Regression algorithm based on minimum variance and its application in heat exchanger measurement [J]. CIESC Journal, 2014, 65(11): 4309-4314.
[8] HAN Huaizhi, LI Bingxi, HE Yurong, BIE Rushan. Heat transfer and flow characteristics in asymmetrical outward convex corrugated tubes [J]. CIESC Journal, 2013, 64(6): 1916-1924.
[9] WANG Xinliang 1,YANG Wengang 2,SHI Xiaoping 1,TAO Jinliang 1,XING Xiaokang 1. Experimental research of flow boiling heat transfer with nanotube arrays surface on titanium [J]. Chemical Industry and Engineering Progree, 2013, 32(08): 1771-1774.
[10] HU Zicheng,SONG Xinnan,LI Changfeng,WANG Qian. Research progress of physical properties of surfactant solutions [J]. , 2011, 30(8): 1658-.
[11] JIANG Xiang,ZHU Dongsheng,ZHANG Jingwei,TU Aimin,WANG Changhong. Performance and industrial application of evaporative condenser with special-shape steel tubes [J]. , 2008, 27(9): 1477-.
[12] PENG Xiaofeng;WU Di;ZHANG Yang. Applications and principle of high performance condensers [J]. , 2007, 26(1): 97-.
[13] GAO Qing, ZHUO Ning, MA Qiliang. ENHANCED HEAT TRANSFER OF GLASS TUBE HEAT EXCHANGER [J]. , 1993, 1(2): 105-113.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!