CIESC Journal ›› 2017, Vol. 68 ›› Issue (7): 2667-2677.doi: 10.11949/j.issn.0438-1157.20170025

Previous Articles     Next Articles

CFD-PBM simulation with EMMS correctors for bubble column reactors

WANG Jue1,2, YANG Ning1   

  1. 1 State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China;
    2 University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2017-01-08 Revised:2017-03-13 Online:2017-07-05
  • Contact: 10.11949/j.issn.0438-1157.20170025
  • Supported by:

    supported by the National Natural Science Foundation of China (91434121, 91634203).


The energy-minimization multi-scale (EMMS) model has been introduced to improve the population balance modeling (PBM) of gas-liquid flows. The energy for bubble breakup and coalescence can be obtained from the EMMS model and then used to derive a correction factor for the coalescence rate. This new model is applied in this study to simulate the bubble columns of high flow rates. Simulations using the three different models, namely, the constant-bubble-size model, the CFD-PBM model and the CFD-PBM-EMMS model, are compared with experimental data. The simulation of CFD-PBM-EMMS gives better prediction for bubble size distribution and liquid axial velocity at different heights as well as the overall and local gas holdup. The relative error of global gas holdup reduces to 5% or 15%, and the mean relative error of local gas holdup reduces to 8% or 17% for 0.16 m·s-1 or 0.25 m·s-1 of superficial gas velocity.

Key words: CFD, population balance modeling, bubble column, gas holdup, bubble size distribution

CLC Number: 

  • TQ021.1

[1] KANTARCI N, BORAK F, ULGEN K O. Bubble column reactors[J]. Process Biochem., 2005, 40(7): 2263-2283.
[2] SIMCIK M, MOTA A, RUZICKA M C, et al. CFD simulation and experimental measurement of gas holdup and liquid interstitial velocity in internal loop airlift reactor[J]. Chem. Eng. Sci., 2011, 66(14): 3268-3279.
[3] HIBIKI T, ISHII M. Lift force in bubbly flow systems[J]. Chem. Eng. Sci., 2007, 62(22): 6457-6474.
[4] SANYAL J, VASQUEZ S, ROY S, et al. Numerical simulation of gas-liquid dynamics in cylindrical bubble column reactors[J]. Chem. Eng. Sci., 1999, 54(21): 5071-5083.
[5] VAN BATEN J M, KRISHNA R. CFD simulations of a bubble column operating in the homogeneous and heterogeneous flow regimes[J]. Chem. Eng. Technol., 2002, 25(11): 1081-1086.
[6] KRISHNAR, VAN BATEN J M, URSEANU M I. Three-phase Eulerian simulations of bubble column reactors operating in the churn-turbulent regime: a scale up strategy[J]. Chem. Eng. Sci., 2000, 55(16): 3275-3286.
[7] SCARGIALI F, D'ORAZIO A, GRISAFI F, et al. Modelling and simulation of gas-liquid hydrodynamics in mechanically stirred tanks[J]. Chem. Eng. Res. Des., 2007, 85(A5): 637-646.
[8] WANG T F, WANG J F, JIN Y. A novel theoretical breakup kernel function for bubbles/droplets in a turbulent flow[J]. Chem. Eng. Sci., 2003, 58(20): 4629-4637.
[9] 覃成鹏, 杨宁. 多相分散体系中气泡/液滴聚并和破碎的群平衡模拟[J]. 化学进展, 2016, (8): 1207-1223.QIN C P, YANG N. Population balance modeling of breakage and coalescence of dispersed bubbles of droplets in multiphase systems[J]. Progress in Chemistry, 2016, (8): 1207-1233.
[10] RAMKRISHNA D. Population Balances: Theory and Applications to Particulate Systems in Engineering[M]. San Diego: Academic Press, 2000.
[11] CHEN P, SANYAL J, DUDUKOVI? M P. Numerical simulation of bubble columns flows: effect of different breakup and coalescence closures[J]. Chem. Eng. Sci., 2005, 60(4): 1085-1101.
[12] RIBEIRO C P, MEWES D. On the effect of liquid temperature upon bubble coalescence[J]. Chem. Eng. Sci., 2006, 61(17): 5704-5716.
[13] CHEN P, DUDUKOVIC M P, SANYAL J. Three-dimensional simulation of bubble column flows with bubble coalescence and breakup[J]. AIChE J., 2005, 51(3): 696-712.
[14] WANG T F, WANG J F, JIN Y. Theoretical prediction of flow regime transition in bubble columns by the population balance model[J]. Chem. Eng. Sci., 2005, 60(22): 6199-6209.
[15] BHOLE M R, JOSHI J B, RAMKRISHNA D. CFD simulation of bubble columns incorporating population balance modeling[J]. Chem. Eng. Sci., 2008, 63(8): 2267-2282.
[16] YAO W, MOREL C. Volumetric interfacial area prediction in upward bubbly two-phase flow[J]. Int. J. Heat Mass Trans., 2004, 47(2): 307-328.
[17] MITRE J F, TAKAHASHI R S M, RIBEIRO C P, et al. Analysis of breakage and coalescence models for bubble columns[J]. Chem. Eng. Sci., 2010, 65(23): 6089-6100.
[18] MUKIN R V. Modeling of bubble coalescence and break-up in turbulent bubbly flow[J]. Int. J. Multiphas Flow, 2014, 62: 52-66.
[19] 肖颀. 搅拌釜及鼓泡塔内气液两相流的多尺度模型[D]. 西安: 西安交通大学, 2015.XIAO Q. Multi-scale modeling of the gas-liquid flow in mixing tanks and bubble columns[D]. Xi'an: Xi'an Jiaotong University, 2015.
[20] YANG N, XIAO Q. A mesoscale approach for population balance modeling of bubble size distribution in bubble column reactors[J]. Chem. Eng. Sci., 2017, DOI: 10.1016/j.ces.2017. 01.026.
[21] QIN C, CHEN C, XIAO Q, et al. CFD-PBM simulation of droplets size distribution in rotor-stator mixing devices[J]. Chem. Eng. Sci., 2016, 155: 16-26.
[22] 许婷婷. DBS曳力模型与湍流模型对气液CFD模拟的影响[D]. 北京: 中国科学院大学, 2014.XU T T. Influence of DBS drag model and turbulence models on CFD simulation of gas-liquid flow[D]. Beijing: University of Chinese Academy of Sciences, 2014.
[23] XU T, JIANG X, YANG N, et al. CFD simulation of internal-loop airlift reactor using EMMS drag model[J]. Particuology, 2015, 19: 124-132.
[24] SCHILLER L, NAUMANN Z. A drag coefficient correlation[J]. Z. Ver. Deutsch. Ing., 1935, 77(1): 318-320.
[25] LUO H, SVENDSEN H F. Theoretical model for drop and bubble breakup in turbulent dispersions[J]. AIChE J., 1996, 66(5): 766-776.
[26] LUO H. Coalescence, breakup and liquid circulation in bubble column reactors[D]. Trondheim, Norway: the Norwegian Institute of Technology, 1993.
[27] LI J. Particle-fluid Two-Phase Flow: the Energy-Minimization Multi-Scale Method[M]. Beijing: Metallurgical Industry Press, 1994.
[28] YANG N, CHEN J H, ZHAO H, et al. Explorations on the multi-scale flow structure and stability condition in bubble columns[J]. Chem. Eng. Sci., 2007, 62(24): 6978-6991.
[29] YANG N. Chapter five-mesoscale transport phenomena and mechanisms in gas-liquid reaction systems[J]. Advances in Chemical Engineering, 2015, 46: 245-280.
[30] XIAO Q, YANG N, LI J. Stability-constrained multi-fluid CFD models for gas-liquid flow in bubble columns[J]. Chem. Eng. Sci., 2013, 100: 279-292.
[31] YANG N, WU Z, CHEN J, et al. Multi-scale analysis of gas-liquid interaction and CFD simulation of gas-liquid flow in bubble columns[J]. Chem. Eng. Sci., 2011, 66(14): 3212-3222.
[32] 肖颀, 杨宁. 基于EMMS模型的搅拌釜内气液两相流数值模拟[J]. 化工学报, 2016, 67(7): 2732-2739.XIAO Q, YANG N. Numerical simulation of gas-liquid flow in stirred tanks based on EMMS model[J]. CIESC Journal, 2016, 67(7): 2732-2739.
[33] MCCLURE D D, NORRIS H, KAVANAGH J M, et al. Validation of a computationally efficient computational fluid dynamics (CFD) model for industrial bubble column bioreactors[J]. Ind. Eng. Chem. Res., 2014, 53(37): 14526-14543.
[34] XU L, YUAN B, NI H, et al. Numerical simulation of bubble column flows in churn-turbulent regime: comparison of bubble size models[J]. Ind. Eng. Chem. Res., 2013, 52(20): 6794-6802.
[35] 徐琰, 董海峰, 田肖, 等. 鼓泡塔中离子液体-空气两相流的CFD-PBM耦合模拟[J]. 化工学报, 2011, 62(10): 2699-2706.XU Y, DONG H F, TIAN X, et al. CFD-PBM coupled simulation of ionic liquid-air two-phase flow in bubble column[J]. CIESC Journal, 2011, 62(10): 2699-2706.

[1] XIONG Pan, YAN Shuguang, LIU Weiyin. Structure optimization of cyclone based on response surface method [J]. CIESC Journal, 2019, 70(1): 154-160.
[2] LIU Yingjie, ZHU Jesse. Flow behaviors in bubble-driven liquid-solid fluidized-bed adopting binary particles [J]. CIESC Journal, 2019, 70(1): 91-98.
[3] LI Han, PU Wenhao, YANG Ning, MAO Yanqin, YUE Chen, ZHANG Qi. Experimental study on air-paraffin direct contact heat transfer characteristics [J]. CIESC Journal, 2018, 69(9): 3792-3798.
[4] GU Xin, LUO Yuankun, XIONG Xiaochao, WANG Ke, TAO Zhilin. Influence of twisty flow heat exchanger's structural parameters on flow field and temperature field [J]. CIESC Journal, 2018, 69(8): 3390-3397.
[5] CHEN Guoqi, SUN Jianjun, SUN Dianfeng, MA Chenbo. Performance analysis of double-end self-pumping mechanical seal for main coolant pump of sodium-cooled fast reactor [J]. CIESC Journal, 2018, 69(8): 3565-3576.
[6] HU Rentao, REN Libo, WANG Dewu, LIU Yan, ZHANG Shaofeng. Numerical simulation of fully developed liquid-solid flow in vertical narrow channel [J]. CIESC Journal, 2018, 69(8): 3408-3417.
[7] TAO Jinliang, HUANG Jiangang, XIAO Hang, YANG Chao, HUANG Qingshan. Influences of interstage height and superficial gas velocity in multistage internal airlift loop reactor on performance of mixing and mass transfer [J]. CIESC Journal, 2018, 69(7): 2878-2889.
[8] DONG Xin, XU Xiaofei, LIU Fengxia, ZENG Qian, WANG Xiaojuan, WEI Wei, LIU Zhijun. Hydrodynamic and mass transfer characteristics of power-law fluids in bubbling reactors [J]. CIESC Journal, 2018, 69(6): 2446-2454.
[9] QI Hang, ZHANG Wei, GONG Liang. Liquid film flow and heat transfer model under spray impact [J]. CIESC Journal, 2018, 69(5): 2014-2022.
[10] ZHEN Wenyuan, LI Qing. Preparation of TiO2/attapulgite composite photocatalyst by supercritical fluid drying method [J]. CIESC Journal, 2018, 69(5): 2290-2298.
[11] XU Ying, XIE Fei, LI Jian, ZHANG Tao, LI Tao, MI Baotong. A capacitance sensor with hydrocyclone phase separator for measuring water volume fraction in gas-liquid two-phase flow [J]. CIESC Journal, 2018, 69(4): 1357-1364.
[12] WANG Yang, ZHUANG Liwei, MA Xiaohua, XU Zhenliang, WANG Zhi. CFD simulation of Dean vortex enhanced mass transfer in hollow fiber membrane pervaporation [J]. CIESC Journal, 2018, 69(11): 4655-4662.
[13] ZHANG Jiabao, CUI Lijie, YANG Ning. Effects of drag model and turbulence model on simulation of air-lift internal-loop reactor [J]. CIESC Journal, 2018, 69(1): 389-395.
[14] CHEN Hongxia, HUANG Linbin, GONG Yifei. Pressure evolution and interface movement of slug flow during micro-channel modulation process [J]. CIESC Journal, 2017, 68(8): 3030-3038.
[15] LIU Baoqing, ZHENG Yijun, LIANG Huili, WANG Manman, JIN Zhijiang. CFD simulation on shear-thinning gas-liquid dispersion in coaxial mixer [J]. CIESC Journal, 2017, 68(6): 2280-2289.
Full text



No Suggested Reading articles found!