CIESC Journal ›› 2017, Vol. 68 ›› Issue (11): 4079-4087.doi: 10.11949/j.issn.0438-1157.20161774

Previous Articles     Next Articles

Simulation for a novel method to quench super-high temperature fluid

RAN Tangchun, YANG Tao, CHEN Pan, LI Jiao, YIN Yongxiang   

  1. Centre of Plasma Technology, College of Chemical Engineering, Sichuan University, Chengdu 610065, Sichuan, China
  • Received:2016-12-19 Revised:2017-07-06 Online:2017-11-05 Published:2017-07-28
  • Supported by:

    supported by the National Natural Science Foundation of China (11375123).


There are many strong endothermic chemical reactions achieved by super-high temperature, they need quickly quenching to avoid reverse reaction for obtaining substantial yield. Based on our experiments of CO2 pyrolysis by thermal plasma, where a non-conventional quenching was achieved with setting a converging nozzle at the exit of reactor to lead the pyrolysis gas at high speed into cooling tube, the reverse reaction CO+O=CO2 was unusually suppressed and very high CO2 conversion was achieved. To understand the mechanism of the novel quench phenomena, a CFD Simulation was carried out. It verified that a quenching rate of 107 K·s-1 could be expected, but the quench phenomena cannot be understood only by gas dynamics principle. A deep analysis on simulation revealed that converging nozzle resulted in viscous fluid strong rotating eddy in the cooling tube, it is the strong rotating eddy that enhance greatly both of the fluid entrainment into body jet and the forced heat transfer of the fluid at the cooling tube before entrainment.

Key words: gas dynamics, converging nozzle, quenching, numerical simulation, CFD

CLC Number: 

  • TQ037+.1

[1] KANG H S, LEE D H, KIM K T, et al. Methane to acetylene conversion by employing cost-effective low-temperature arc[J]. Fuel Processing Technology, 2016, 148:209-216.
[2] FRIDMAN A. Plasma Chemistry[M]. Cambridge:Cambridge University Press, 2008:260-262.
[3] KWAK H S, HAND S U, HONG Y C, et al. Disintegration of carbon dioxide molecules in a microwave plasma torch[J]. Scientific Reports, 2015, 5:18436.
[4] HONG C K, NA Y H, UHM H S, et al. Effects of mass flow rate on the thermal-flow characteristics of microwave CO2 plasma[J]. Journal of Nanoscience & Nanotechnology, 2015, 15(3):2338-2341.
[5] YUM S H, KIM G J, PARK D W, et al. Decomposition and conversion of carbon dioxide into synthesis gas using thermal plasma[J]. 1997, 3(4):293-297.
[6] KOBAYASHI A, OSAKI K, YAMABE C, et al. Treatment of CO2 gas by high-energy type plasma[J]. Vacuum, 2002, 65(3):475-479.
[7] TAO X M, BAI M G, WU Q Y, et al. CO2 reforming of CH4 by binode thermal plasma[J]. International Journal of Hydrogen Energy, 2009, 34(23):9373-9378.
[8] HUCKO A, SZYMANSKI A. Thermal decomposition of carbon dioxide in an argon plasma jet[J]. Plasma Chemistry & Plasma Processing, 1984, 4(1):59-72.
[9] 罗义文, 漆继红, 印永祥, 等. 等离子体裂解天然气制乙炔的技术和经济分析[J]. 天然气化工·C1化学与化工, 2002, 27(3):37-42. LUO Y W, QI J H, YIN Y X, et al. Analysis of technology and economy for acetylene production by pyrolysis of natural gas in plasma[J]. Natural Gas Chemical Industry, 2002, 27(3):37-42.
[10] 陶旭梅, 代伟, 陈琦, 等. 等离子体射流裂解天然气制乙炔的实验[J]. 天然气工业, 2006, 26(4):131-134. TAO X M, DAI W, CHEN Q, et al. Laboratory test for conversion of natural gas to acetylene by plasma jet[J]. Natural Gas Industry, 2006, 26(4):131-134.
[11] 余徽, 印永祥, 戴晓雁, 等. 等离子体射流裂解甲烷制乙炔的数值模拟[J]. 化工学报, 2006, 57(10):2319-2326. YU H, YIN Y X, DAI X Y, et al. Numerical simulation of methane conversion to acetylene in plasma jet reactor[J]. Journal of Chemical Industry and Engineering(China), 2006, 57(10):2319-2326.
[12] LEDE J, LAPICQUE F, VILLERMAUX J, et al. Production of hydrogen by direct thermal decomposition of water[J]. International Journal of Hydrogen Energy, 1983, 8(9):675-679.
[13] BOCKRIS J O, DANDAPANI B, COCK D, et al. On the splitting of water[J]. International Journal of Hydrogen Energy, 1985, 10(3):179-201.
[14] SUNDSTROM D W, DEMICHIELL R L. Quenching processes for high temperature chemical reactions[J]. Industrial & Engineering Chemistry Process Design & Development, 1971, 10(1):114-122.
[15] KHAN S A, ASHFAQ S. Experimental studies on low speed converging nozzle flow with sudden expansion[J]. International Journal of Emerging Technology and Advanced Engineering, 2014, 4(1):532-540.
[16] 刘杨, 边江, 郭晓明, 等. Laval喷管内激波位置的计算及制冷性能分析[J]. 低温与超导, 2016, 44(6):14-17. LIU Y, BIAN J, GUO X M, et al. Calculation of shock-wave position and analysis of refrigeration performance in Laval nozzle[J]. Cryogenics, 2016, 44(6):14-17.
[17] 高全杰, 汤红军, 汪朝晖, 等. 基于Fluent的超音速喷嘴的数值模拟及结构优化[J]. 制造业自动化, 2015, 37(2):88-90. GAO Q J, TANG H J, WANG Z H, et al. Numerical simulation and structure optimization of supersonic nozzle based on Fluent[J]. Manufacturing Automation, 2015, 37(2):88-90.
[18] 周章根, 马德毅. 基于Fluent的高压喷嘴射流的数值模拟[J]. 机械制造与自动化, 2010, 39(1):61-62. ZHOU Z G, MA D Y. Numerical simulation of high-pressure jet nozzle based on Fluent[J]. Machine Building & Automation, 2010, 39(1):61-62.
[19] BAYAZITOGLU Y, BROTZEN F R, ZHANG Y. Metal vapor condensation in a converging nozzle[J]. Nanostructured Materials, 1996, 7(7):789-803.
[20] LI Z D, ZHANG G Q, LI Z, et al. Simulation of gas flow field in Laval nozzle and straight nozzle for powder metallurgy and spray forming[J]. Metallurgy and Metal Working, 2008, 15(6):44-47.
[21] KUAN B T, WITT P J. Modelling supersonic quenching of magnesium vapour in a Laval nozzle[J]. Chemical Engineering Science, 2013, 87(2):23-39.
[22] DHARAVATH M, SINHA P K, CHAKRABORTY D, et al. Simulation of supersonic base flow:effect of computational grid and turbulence model[J]. Proteins-structure Function & Bioinformatics, 2009, 74(2):390-399.
[23] 潘锦珊, 单鹏. 气体动力学基础[M]. 北京:国防工业出版社, 2012:620-622. PAN J S, SHAN P. Fundamentals of Gasdynamics[M]. Beijing:National Defense Industry Press, 2012:620-622.
[24] NIU K, TAKAYUKI A. Analysis for high compressible supersonic flow in a converging nozzle[J]. Fluid Dynamics Research, 1988, 4(3):195-203.
[25] 曹义华, 陆家鹏. 管道轴对称旋转流的数值模拟[J]. 弹道学报, 1992, (3):14-18. CAO Y H, LU J P. The numerical simulation of axisymmetric swirling flow in a round pipe[J]. Journal of Ballistics, 1992, (3):14-18.
[26] 王平, 刘学山, 乔立民. 轴对称拉瓦尔喷管流场分析[J]. 飞机设计, 2013, 33(2):23-26. WANG P, LIU X S, QIAO L M. Axisymmetric Laval nozzle flow field analysis[J]. Aircraft Design, 2013, 33(2):23-26.
[27] 陶文铨. 数值传热学[M]. 西安:西安交通大学出版社, 2001:566-570. TAO W Q. Numerical Heat Transfer[M]. Xi'an:Xi'an Jiaotong University Press, 2001:566-570.
[28] 周宇, 钱炜祺, 邓有奇, 等. k-ω SST两方程湍流模型中参数影响的初步分析[J]. 空气动力学学报, 2010, 28(2):213-217. ZHOU Y, QIAN W Q, DENG Y Q, et al. Introductory analysis of the influence of Menter's k-ω SST turbulence model's parameters[J]. Acta Aerodynamica Sinica, 2010, 28(2):213-217.
[29] MENTER F R. Zonal two-equation k-ω turbulence models for aerodynamic flows[R]. NASA, 1992.
[30] 柴诚敬. 化工原理[M]. 北京:高等教育出版社, 2005:246-248. CHAI C J. Principle of Chemical Engineering[M]. Beijing:Higher Education Press, 2005:246-248.

[1] XIONG Pan, YAN Shuguang, LIU Weiyin. Structure optimization of cyclone based on response surface method [J]. CIESC Journal, 2019, 70(1): 154-160.
[2] LI Jingyan, LIU Zhongliang, ZHOU Yu, LI Yanxia. Study of thermal-hydrologic-mechanical numerical simulation model on CO2 plume geothermal system [J]. CIESC Journal, 2019, 70(1): 72-82.
[3] SUN Xing, XU Keke, MENG Hua. Supercritical-pressure heat transfer of n-decane with fuel pyrolysis in helical tube [J]. CIESC Journal, 2018, 69(S1): 20-25.
[4] LI Bin, ZHANG Shangbin, ZHANG Lei, TENG Zhaoyu, WANG Youtian. Numerical simulation of bubble-particle flow in bubbling bed based on LBM-DEM [J]. CIESC Journal, 2018, 69(9): 3843-3850.
[5] CHU Tong, YANG Yuesuo, LU Ying, WU Yuhui, CHEN Yu, DU Xinqiang. Thermal enhanced air sparging for oil contamination remediation in shallow groundwater of cold regions [J]. CIESC Journal, 2018, 69(8): 3701-3710.
[6] HU Rentao, REN Libo, WANG Dewu, LIU Yan, ZHANG Shaofeng. Numerical simulation of fully developed liquid-solid flow in vertical narrow channel [J]. CIESC Journal, 2018, 69(8): 3408-3417.
[7] LIU Bingbing, WANG Mingyu, GAO Hongtao, ZHANG Shaojun. Composite model of heat transfer and phase transition with high gas and liquid density ratio [J]. CIESC Journal, 2018, 69(8): 3418-3427.
[8] SUN Ziwen, CHEN Dailin, ZHONG Wenqi, YU Ai-Bing. MP-PIC simulation of particle clusters in fast fluidized bed risers [J]. CIESC Journal, 2018, 69(8): 3443-3451.
[9] CHEN Guoqi, SUN Jianjun, SUN Dianfeng, MA Chenbo. Performance analysis of double-end self-pumping mechanical seal for main coolant pump of sodium-cooled fast reactor [J]. CIESC Journal, 2018, 69(8): 3565-3576.
[10] ZHOU Chilou, CHEN Guohua. Characterization of rubber O-ring seal in high-pressure gaseous hydrogen [J]. CIESC Journal, 2018, 69(8): 3557-3564.
[11] GU Xin, LUO Yuankun, XIONG Xiaochao, WANG Ke, TAO Zhilin. Influence of twisty flow heat exchanger's structural parameters on flow field and temperature field [J]. CIESC Journal, 2018, 69(8): 3390-3397.
[12] CUI Haichao, CHEN Xianhui, WANG Cheng, XIA Weidong. Contrastive analysis of exergy in carbon black process of plasma method and furnace method [J]. CIESC Journal, 2018, 69(7): 2815-2821.
[13] WU Yun, DU Xiaolei, SONG Kai, LIU Hongyu, WANG Jie, WANG Erpo. Numerical simulation analysis of flow characteristics of suspended packing in biological contact oxidation tank [J]. CIESC Journal, 2018, 69(7): 3242-3248.
[14] WU Daodong, LI Juxiang. Heat transfer characteristics of salt-bath structure heat exchanger in ascension pipe of coke oven [J]. CIESC Journal, 2018, 69(7): 2869-2877.
[15] LIN Qi, WANG Shugang, WANG Jihong, SONG Shuanglin. Numerical simulation of constrained melting inside spherical capsule by lattice Boltzmann method [J]. CIESC Journal, 2018, 69(6): 2373-2379.
Full text



No Suggested Reading articles found!