CIESC Journal ›› 2017, Vol. 68 ›› Issue (6): 2233-2248.doi: 10.11949/j.issn.0438-1157.20161619

Previous Articles     Next Articles

Progress of solid-liquid suspension in stirred vessel

YANG Fengling1,2, ZHOU Shenjie1,2   

  1. 1. School of Mechanical Engineering, Shandong University, Jinan 250061, Shandong, China;
    2. Key Laboratory of High-efficiency and Clean Mechanical Manufacture (Shandong University), Ministry of Education, Jinan 250061, Shandong, China
  • Received:2016-11-15 Revised:2017-03-09 Online:2017-06-05 Published:2017-03-17
  • Contact: 10.11949/j.issn.0438-1157.20161619 E-mail:fly@sdu.edu.cn
  • Supported by:

    supported by the National Natural Science Foundation of China (21306105) and the Key Development Foundation of Shandong Province(2016GGX103035)

Abstract:

Solid-liquid suspension is one of the typical unit operations in the process industry and accordingly, study on the suspension performance is of great importance. In this paper, developments of investigations on the solid-liquid suspension in stirred vessels in the past six decades were reviewed. Subsequently, configurations of the commonly used stirred systems were introduced. The critical suspension speeds of solid particles in baffled and unbaffled stirred vessels were clarified and compared. Finally, the principles of different experimental and numerical methods related with solid-liquid suspensions were presented. Investigations on the effect of free surface deformation on solids suspension and the research status were briefly summarized. The future development of numerical simulation on the solid-liquid suspension in stirred vessels is discussed.

Key words: stirred vessel, solid-liquid suspension, multiphase flow, free-surface, CFD

CLC Number: 

  • TQ027

[1] MICALE G, CARRARA V, GRISAFI F, et al. Solids suspension in three-phase stirred tanks[J]. Chem. Eng. Res. Des., 2000, 78(3): 319-326.
[2] NIENOW A W, BUJALSKI W. Recent studies on agitated three-phase (gas-solid-liquid) systems in the turbulent regime[J]. Chem. Eng. Res. Des., 2002, 80(8): 832-838.
[3] LI W B, GENG X Y, BAO Y Y, et al. Micromixing characteristics in a gas-liquid-solid stirred tank with settling particles[J]. Chin. J. Chem. Eng., 2015, 23(3): 461-470.
[4] ZU L Z, ZHOU H B, YANG S F, et al. Configuration optimization and mass transfer in a dual-impeller bioreactor[J]. J. Chem. Eng. Jpn., 2015, 48(5): 360-366.
[5] YANG S F, LI X Y, YANG C, et al. Computational fluid dynamics simulation and experimental measurement of gas and solid holdup distributions in a gas-liquid-solid stirred reactor[J]. Ind. Eng. Chem. Res., 2016, 55(12): 3276-3286.
[6] DAVOODY M, RAMAN A A A, PARTHASARATHY R. Agitation energy efficiency in gas-solid-liquid stirred vessels operating at ultra-high solids concentrations[J]. Chem. Eng. Res. Des., 2016, 111: 34-48.
[7] BAO Y Y, HAO Z G, GAO Z M, et al. Suspension of buoyant particles in a three phase stirred tank[J]. Chem. Eng. Sci., 2005, 60(8): 2283-2292.
[8] 包雨云, 龙建刚, 高正明, 等. 上浮颗粒特性对三相搅拌槽内固-液悬浮及气-液分散的影响[J]. 高校化学工程学报, 2006, 20(1): 25-30.
BAO Y Y, LONG J G, GAO Z M, et al. Effects of buoyant particle characteristics on solid-liquid suspension and gas-liquid dispersion in a three phase stirred tank[J]. Journal of Chemical Engineering of Chinese Universities, 2006, 20(1): 25-30.
[9] KHAZAM O, KRESTA S M. Mechanisms of solids drawdown in stirred tanks[J]. Can. J. Chem. Eng., 2008, 86(4): 622-634.
[10] 李良超, 徐斌, 杨军. 基于计算流体力学模拟的下沉与上浮颗粒在搅拌槽内的固液悬浮特性[J]. 机械工程学报, 2014, 50(12): 185-191.
LI L C, XU B, YANG J. Sinking/floating particles solid suspension characteristics in stirred tank based on CFD simulation[J]. Journal of Mechanical Engineering, 2014, 50(12): 185-191.
[11] MONTANTE G, MAGELLI F. Mixed solids distribution in stirred vessels: experiments and computational fluid dynamics simulations[J]. Ind. Eng. Chem. Res., 2007, 46(9): 2885-2891.
[12] AYRANCI I, KRESTA S M. Design rules for suspending concentrated mixtures of solids in stirred tanks[J]. Chem. Eng. Res. Des., 2011, 89(10): 1961-1971.
[13] AYRANCI I, KRESTA S M, DERKSEN J J. Experiments and simulations on bidisperse solids suspension in a mixing tank[J]. Chem. Eng. Technol., 2013, 36(11): 1957-1967.
[14] PAUL E L, ATIEMO-OBENG V A, KRESTA S M. Handbook of Industrial Mixing: Science and Practice[M]. Hoboken, New Jersey: John Wiley & Sons, Inc., 2004: 543-584.
[15] OCHIENG A, ONYANGO M S. CFD simulation of solids suspension in stirred tanks: review[J]. Hem. Ind., 2010, 64(5): 365-374.
[16] KASAT G R, PANDIT A B. Review on mixing characteristics in solid-liquid and solid-liquid-gas reactor vessels[J]. Can. J. Chem. Eng., 2005, 83(4): 618-643.
[17] SHAH R E, SHAH R S, SAJJADI B, et al. Solid-liquid mixing analysis in stirred vessels[J]. Rev. Chem. Eng., 2015, 31(2): 119-148.
[18] JAFARI R, CHAOUKI J, TANGUY P A. A comprehensive review of just suspended speed in liquid-solid and gas-liquid-solid stirred tank reactors[J]. Int. J. Chem. Reactor Eng., 2012, 10(1): 1-32.
[19] SHAMLOU P A. Processing of Solid-Liquid Suspensions[M]. Boston UK: Butterworth-Heinemann Ltd., 2016.
[20] JAHODA M, MACHO? V, VLACH L, et al. Macro-instabilities of a suspension in an axially agitated mixing tank[J]. Acta Polytech., 2002, 42(3): 3-7.
[21] ENG M, RASMUSON A. Influence of solids on macro-instabilities in a stirred tank[J]. Chem. Eng. Res. Des., 2012, 90(8): 1052-1062.
[22] ENG M, RASMUSON A. Large eddy simulation of the influence of solids on macro instability frequency in a stirred tank[J]. Chem. Eng. J., 2015, 259: 900-910.
[23] NIENOW A W, MILES D. The effect of impeller/tank, configurations on fluid-particle mass transfer[J]. Chem. Eng. J., 1978, 15(1): 13-24.
[24] YAMAZAKI H, TOJO K, MIYANAMI K. Concentration profiles of solid suspended in a stirred tank[J]. Powder Technol., 1986, 48(3): 205-216.
[25] BARRESI A, BALDI G. Solid dispersion in an agitated vessel: effect of particle shape and density[J]. Chem. Eng. Sci., 1987, 42(12): 2949-2956.
[26] 肖建军,包雨云,黄雄斌,等. 带导流筒搅拌槽中循环流量的实验研究[J]. 华北工学院学报, 2003, 23(1): 25-29.
XIAO J J, BAO Y Y, HUANG X B, et al. Experimental study on circulating flux in a stirred tank with draft-tube[J]. Journal of North China Insitute of Technology, 2003, 23(1): 25-29.
[27] 陈文民, 黄雄斌, 高正明. 固-液导流筒搅拌槽内流体流动和颗粒悬浮特性[J]. 过程工程学报, 2007, 7(1): 14-18.
CHEN W M, HUANG X B, GAO Z M. Characteristics of fluid flow and particle suspension in a solid-liquid draft-tube stirred tank[J]. The Chinese Journal of Process Engineering, 2007, 7(1): 14-18.
[28] GRISAFI F, BRUCATO A, RIZZUTI L. Solid-liquid mass transfer coefficients in mixing tanks: influence of side wall roughness[C]//Institution of Chemical Engineers Symposium Series. Hemsphere Publishing Corporation, 1994, 136: 571-578.
[29] FREUDIG B, HOGEKAMP S, SCHUBERT H. Dispersion of powers in liquids in a stirred vessel[J]. Chem. Eng. Process., 1999, 38(4/5/6): 525-532.
[30] SBRIZZAI F, LAVEZZO V, VERZICCO R, et al. Direct numerical simulation of turbulent particle dispersion in an unbaffled stirred-tank reactor[J]. Chem. Eng. Sci., 2006, 61(9): 2843-2851.
[31] BRUJES L, LEGRAND J, CARNELLE G. Complete suspension of microcapsules in baffled and unbaffled stirred tanks[J]. Chem. Eng. Technol., 1998, 21(9): 735-744.
[32] 单贤根, 禹耕之, 杨超, 等. 无挡板搅拌槽中液-固体系的分散特性[J]. 过程工程学报, 2008, 8(1): 1-7.
SHAN X G, YU G Z, YANG C, et al. Dispersion characteristics of solid-liquid suspension in an unbaffled stirred tank[J]. The Chinese Journal of Process Engineering, 2008, 8(1): 1-7.
[33] SHAN X G, YU G Z, YANG C, et al. Numerical simulation of liquid-solid flow in an unbaffled stirred tank with a pitched-blade turbine downflow[J]. Ind. Eng. Chem. Res., 2008, 47(9): 2926-2940.
[34] 周宏宝, 李向阳, 杨超, 等. 基于LED光源反射的液固搅拌槽中颗粒悬浮特性测定的光纤法[J]. 过程工程学报, 2011, 11(6): 933-937.
ZHOU H B, LI X Y, YANG C, et al. An optic method based on LED reflection for measurement of the characteristics of particle suspension in a liquid-solid stirred tank[J]. The Chinese Journal of Process Engineering, 2011, 11(6): 933-937.
[35] LI X, YANG C, ZHANG G, et al. Experimental studies on suspension of solid particles in a low-shear stirred vessel[J]. Chem. Eng. Technol., 2011, 34(9): 1581-1586.
[36] TAMBURINI A, GENTILE L, CIPOLLINA A, et al. Experimental investigation of dilute solid-liquid suspension in an unbaffled stirred vessel by a novel pulsed laser based image analysis technique[J]. Chem. Eng. Trans., 2009, 17(1): 531-536.
[37] BRUCATO A, CIPOLLINA A, MICALE G, et al. Particle suspension in top-covered unbaffled tanks[J]. Chem. Eng. Sci., 2010, 65(10): 3001-3008.
[38] TAMBURINI A, BRUCATO A, BUSCIGLIO A, et al. Solid-liquid suspensions in top-covered unbaffled vessels: influence of particle size, liquid viscosity, impeller size, and clearance[J]. Ind. Eng. Chem. Res., 2014, 53(23): 9587-9599.
[39] TAMBURINI A, CIPOLLINA A, MICALE G, et al. Particle suspension in vortexing unbaffled stirred tanks[J]. Ind. Eng. Chem. Res., 2016, 55(27): 7535-7547.
[40] 来永斌, 杨敏官. 无挡板搅拌槽内固液悬浮的试验[J]. 江苏大学学报(自然科学版), 2010, 31(3): 309-313.
LAI Y B, YANG M G. Experiment on solid-liquid suspension in unbaffled stirred tank[J]. Journal of Jiangsu University (Natural Science Edition), 2010, 31(3): 309-313.
[41] 杨锋苓, 周慎杰, 张翠勋, 等. 无挡板搅拌槽的固液悬浮特性[J]. 四川大学学报(工程科学版), 2014, 44(4): 185-190.
YANG F L, ZHOU S J, ZHANG C X, et al. Solid-liquid suspension in an unbaffled stirred tank[J]. Journal of Sichuan University (Engineering Science Edition), 2014, 44(4): 185-190.
[42] WANG S, BOGER D V, WU J. Energy efficient solids suspension in an agitated vessel-water slurry[J]. Chem. Eng. Sci., 2012, 74: 233-243.
[43] WANG S, PARTHASARATHY R, BONG E Y, et al. Suspension of ultrahigh concentration solids in an agitated vessel[J]. AIChE J., 2012, 58(4): 1291-1298.
[44] WANG S, PARTHASARATHY R, WU J, et al. Optimum solids concentration in an agitated vessel[J]. Ind. Eng. Chem. Res., 2014, 53(10): 3959-3973.
[45] WU J, WANG S, NGUYEN B, et al. Improved viscous slurry agitation for minerals processing[J]. Miner. Eng., 2015, 78: 21-31.
[46] WU J, WANG S, NGUYEN B, et al. Improved mixing in a magnetite iron ore tank via swirl flow: lab-scale and full-scale studies[J]. Chem. Eng. Technol., 2016, 39(3): 505-514.
[47] WANG S, JIANG M, IBRAHIM S, et al. Optimized stirred reactor for enhanced particle dispersion[J]. Chem. Eng. Technol., 2016, 39(4): 680-688.
[48] KIPKE K. Suspension by side entering agitator[J]. Chem. Eng. Process., 1984, 18(4): 233-238.
[49] CHEN J, XIAO W. Solids suspension study in a side-entering stirred tank through CFD modeling[J]. Int. J. Chem. Reactor Eng., 2013, 11(1): 331-346.
[50] 都荣礼, 黄雄斌, 王昕, 等. 侧伸式气液搅拌槽内的搅拌功率与传质性能[J]. 过程工程学报, 2008, 8(4): 709-713.
DU R L, HUANG X B, WANG X, et al. Measurement of stirring power and mass transfer by a side-entering gas-liquid agitator[J]. The Chinese Journal of Process Engineering, 2008, 8(4): 709-713.
[51] 郑晓东, 黄雄斌, 都荣礼. 侧伸式搅拌槽固液悬浮性能[J]. 过程工程学报, 2009, 9(3): 417-423.
ZHENG X D, HUANG X B, DU R L. Suspension of solid particles by side-entering agitators[J]. The Chinese Journal of Process Engineering, 2009, 9(3): 417-423.
[52] 李永纲, 黄雄斌. 立式圆槽内多轴搅拌器固-液悬浮性能[J]. 过程工程学报, 2012, 12(2): 181-186.
LI Y G, HUANG X B. Solid-liquid suspension in a vertical three-impeller stirred tank[J]. The Chinese Journal of Process Engineering, 2012, 12(2): 181-186.
[53] TEZURA S, KIMURA A, YOSHIDA M, et al. Agitation requirements for complete solid suspension in an unbaffled agitated vessel with an unsteadily forward-reverse rotating impeller[J]. J. Chem. Technol. Biotechnol., 2007, 82(7): 672-680.
[54] YOSHIDA M, KIMURA A, YONEYAMA A, et al. Design and operation of unbaffled vessels agitated with an unsteadily forward-reverse rotating impeller handling solid-liquid dispersions[J]. Asia-Pac. J. Chem. Eng., 2012, 7(4): 572-580.
[55] 车占富. 斜插式搅拌器内部流场及固液悬浮特性的研究[D]. 镇江: 江苏大学, 2013.
CHE Z F. Study on the flow field and solid-liquid suspension in an inclined inserted stirred tank[D]. Zhenjiang: Jiangsu University, 2013.
[56] 杨锋苓, 周慎杰, 张翠勋, 等. 偏心搅拌槽固液悬浮特性[J]. 过程工程学报, 2008, 8(6): 1064-1069.
YANG F L, ZHOU S J, ZHANG C X, et al. Investigation on solid-liquid suspension performance in an eccentrically stirred tank[J]. The Chinese Journal of Process Engineering, 2008, 8(6): 1064-1069.
[57] 杨锋苓, 周慎杰, 张翠勋, 等. 偏心搅拌槽内固-液悬浮特性研究[J]. 华中科技大学学报(自然科学版), 2012, 40(11): 22-26.
YANG F L, ZHOU S J, ZHANG C X, et al. Study on the solid-liquid suspension in eccentrically stirred tanks[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2012, 40(11): 22-26.
[58] GICALA B. Computational fluid dynamics modelling of a suspension of solid particles in a full scale unbaffled vessel[J]. Chem. Process Eng., 2009, 30(3): 475-484.
[59] 周坤. 偏心搅拌槽内固液两相流动特性的研究[D]. 北京: 北京化工大学, 2015.
ZHOU K. Study for the flow characteristic of solid-liquid system in eccentrically stirred tank[D]. Beijing: Beijing University of Chemical Technology, 2015.
[60] MERSMANN A, WERNER F, MAURER S, et al. Theoretical prediction of the minimum stirrer speed in mechanically agitated suspensions[J]. Chem. Eng. Process., 1998, 37(6): 503-510.
[61] 张凤涛, 刘芳, 黄雄斌. 高固含搅拌槽内临界离底悬浮转速的数值模拟[J]. 过程工程学报, 2007, 7(3): 439-444.
ZHANG F T, LIU F, HUANG X B. Numerical simulation of critical suspension impeller speed in a high concentration stirred tank[J]. The Chinese Journal of Process Engineering, 2007, 7(3): 439-444.
[62] ZWIETERING T N. Suspending of solid particles in liquid by agitators[J]. Chem. Eng. Sci., 1958, 8(3/4): 244-253.
[63] AYRANCI I, KRESTA S M. Critical analysis of Zwietering correlation for solids suspension in stirred tanks[J]. Chem. Eng. Res. Des., 2014, 92(3): 413-422.
[64] NARAYANAN S, BHATIA V K, GUHA D K, et al. Suspension of solids by mechanical agitation[J]. Chem. Eng. Sci., 1969, 24(2): 223-230.
[65] BRUCATO A, BRUCATO V. Unsuspended mass of solid particles in stirred tanks[J]. Can. J. Chem. Eng., 1998, 76(3): 420-427.
[66] GUHA D, RAMACHANDRAN P A, DUDUKOVIC M P. Flow field of suspended solids in a stirred tank reactor by Lagrangian tracking[J]. Chem. Eng. Sci., 2007, 62(22): 6143-6154.
[67] BALDI G, CONTI R, ALARIA E. Complete suspension of particles in mechanically agitated vessels[J]. Chem. Eng. Sci., 1978, 33(1): 21-25.
[68] NIENOW A W. Suspension of solid particles in turbine agitated baffled vessels[J]. Chem. Eng. Sci., 1968, 23(12): 1453-1459.
[69] ARMENANTE P M, NAGAMINE E U. Effect of flow off-bottom impeller clearance on the minimum agitation speed for complete suspension of solids in stirred tanks[J]. Chem. Eng. Sci., 1998, 53(9): 1757-1775.
[70] ARMENANTE P M, NAGAMINE E U, SUSANTO J. Determination of correlation to predict the minimum agitation speed for complete solid suspension in agitated vessels[J]. Can. J. Chem. Eng., 1998, 76(3): 413-419.
[71] MOLERUS O, LATZEL W. Suspension of solid particles in agitated vessels(Ⅰ): Archimedes numbers ≤ 40[J]. Chem. Eng. Sci., 1987, 42(6): 1423-1430.
[72] MOLERUS O, LATZEL W. Suspension of solid particles in agitated vessels(Ⅱ): Archimedes numbers > 40, reliable prediction of minimum stirrer angular velocities[J]. Chem. Eng. Sci., 1987, 42(6): 1431-1437.
[73] ARMENANTE P M, HUANG Y T, LI T. Determination of the minimum agitation speed to attain the just dispersed state in solid-liquid and liquid-liquid reactors provided with multiple impellers[J]. Chem. Eng. Sci., 1992, 47(9/10/11): 2865-2870.
[74] PAVLUSHENKO I S, KOSTIN N M, MATVEEV M S. Stirrer speeds in the stirring of suspensions[J]. J. Appl. Chem., 1957, 30: 1235-1243.
[75] NAGATA S. Mixing Principles and Applications[M]. New York: Halsted Press, 1975.
[76] KRAUME M. Mixing times in stirred suspensions[J]. Chem. Eng. Technol., 1992, 15(5): 313-318.
[77] HICKS M T, MYERS K J, BAKKER A. Cloud height in solids suspension agitation[J]. Chem. Eng. Commun., 1997, 160(1): 137-155.
[78] BOURNE J R, SHARMA R N. Homogeneous particle suspension in propeller-agitated flat bottom tanks[J]. Chem. Eng. J., 1974, 8(3): 243-250.
[79] MAC TAGGART R S, NASER-EL-DIN H A, MASLIYAH J H. Sample withdrawal from a slurry mixing tank[J]. Chem. Eng. Sci., 1993, 48(5): 921-923.
[80] BARRESI A A, KUZMANI? N, BALDI G. Continuous sampling of a slurry from a stirred vessel: analysis of the sampling efficiency and affecting parameters[J]. IChem. Symp. Ser., 1994, 136: 17-24.
[81] KUZMANIC N, KESSLER E M. Continuous sampling of floating solids suspension form a mixing tank[J]. Ind. Eng. Chem. Res., 1997, 36(11): 5015-5022.
[82] NASR-EL-DIN H, SHOOK C A, COLWELL A. A conductivity probe for measuring local concentrations in slurry systems[J]. Int. J. Multiphase Flow, 1987, 13(3): 365-378.
[83] MAC TAGGART R S, NASER-EL-DIN H A, MASLIYAH J H. A conductivity probe for measuring local solids concentration in a slurry mixing tank[J]. Sep. Technol., 1993, 3(3): 151-160.
[84] 黄雄斌, 闫宪斌, 施力田, 等. 固液搅拌槽内液相速度的分布[J]. 化工学报, 2002, 53(7): 717-722.
HUANG X B, YAN X B, SHI L T, et al. Liquid velocity distributions in solid-liquid stirred vessels[J]. Journal of Chemical Industry and Engineering(China), 2002, 53(7): 717-722.
[85] MICALE G, GRISAFI F, BRUCATO A. Assessment of particle suspension conditions in stirred vessels by means of pressure gauge technique[J]. Chem. Eng. Res. Des., 2002, 80(8): 893-902.
[86] LASSAIGNE M, BLAIS B, FRADETTE L, et al. Experimental investigation of the mixing of viscous liquids and non-dilute concentrations of particles in a stirred tank[J]. Chem. Eng. Res. Des., 2016, 108(s): 55-68.
[87] BLAIS B, LASSAIGNE M, GONIVA C, et al. Development of an unresolved CFD-DEM model for the flow of viscous suspensions and its application to solid-liquid mixing[J]. J. Comput. Phys., 2016, 318: 201-221.
[88] 马国华, 霍元素, 王英琛, 等. 固液悬浮体系中固相浓度测量的新方法——光电测量法[J]. 化学工程, 1990, 18(1): 58-61.
MA G H, HUO Y S, WANG Y C, et al. A new method for measurement of solid concentration in the solid-liquid suspension system—photoelectric measurement method[J]. Chemical Engineering(China), 1990, 18(1): 58-61.
[89] YAMAZAKI H, TOJO K, MIYANAMI K. Concentration profiles of solids suspended in a stirred tank[J]. Powder Technol., 1986, 48(3): 205-216.
[90] ANGST R, KRAUME M. Experimental investigations of stirred solid/liquid systems in three different scales: particle distribution and power consumption[J]. Chem. Eng. Sci., 2006, 61(9): 2864-2870.
[91] FERREIRA P J, RASTEIRO M G, FIGUEIREDO M M. A new approach to measuring solids concentration in mixing tanks[J]. Adv. Powder Tech., 1994, 5(1): 15-24.
[92] TAMBURINI A, CIPOLLINA A, MICALE G, et al. Particle distribution in dilute solid liquid unbaffled tanks via a novel laser sheet and image analysis based technique[J]. Chem. Eng. Sci., 2013, 87: 341-358.
[93] MONTANTE G, MICALE G, MAGELLI F, et al. Experimental and CFD prediction of solid particle distribution in vessel agitated with four pitched blade turbines[J]. Chem. Eng. Res. Des., 2001, 79(8): 1005-1010.
[94] HOSSEINI S, PATEL D, EIN-MOZAFFARI F. Study of solid-liquid mixing in agitated tanks through electrical resistance tomography[J]. Chem. Eng. Sci., 2010, 65(4): 1374-1384.
[95] HUI L K, BENNINGTON C P J, DUMONT G A. Cavern formation in pulp suspensions using side-entering axial-flow impellers[J]. Chem. Eng. Sci., 2009, 64(3): 509-519.
[96] SARDESHPANDE M V, KUMAR G, ADITYA T, et al. Mixing studies in unbaffled stirred tank reactor using electrical resistance tomography[J]. Flow Meas. Instrum., 2016, 47: 110-121.
[97] CARLETTI C, MONTANTE G, BLASIO C D, et al. Liquid mixing dynamics in slurry stirred tanks based on electrical resistance tomography[J]. Chem. Eng. Sci., 2016, 152: 478-487.
[98] LARACHI F, CHAOUKI J, KENNEDY G, et al. Radioactive particle tracking in multiphase reactor: principles and applications[M]// CHAOUKI J, LARACHI F, DUDUKOVIC M P. Non-invasive Monitoring of Multiphase Flows. Amsterdam: Elsevier, 1997: 335-406.
[99] RAMMOHAN A R, KEMOUN A, AL-DAHHAN M H, et al. Characterization of single phase flow in stirred tanks via computer automated radioactive particle tracking (CARPT)[J]. Chem. Eng. Res. Des., 2001, 79(8): 831-844.
[100] FANGARY Y S, BARIGOU M, SEVILLE J P K, et al. Fluid trajectories in a stirred vessel of non-Newtonian liquid using positron emission particle tracking[J]. Chem. Eng. Sci., 2000, 55(24): 5969-5979.
[101] FANGARY Y S, BARIGOU M, SEVILLE J P K, et al. A Langrangian study of solids suspension in a stirred vessel by positron emission particle tracking (PEPT)[J]. Chem. Eng. Technol., 2002, 25(5): 521-528.
[102] BARIGOU M. Particle tracking in opaque mixing systems: an overview of the capabilities of PET and PEPT[J]. Chem. Eng. Res. Des., 2004, 82(9): 1258-1267.
[103] FISHWICK R, WINTERBOTTOM M, PARKER D, et al. The use of positron emission particle tracking in the study of multiphase stirred tank reactor hydrodynamics[J]. Can. J. Chem. Eng., 2005, 83(1): 97-103.
[104] PIANKO-OPRYCH P, NIENOW A W, BARIGOU M. Positron emission particle tracking (PEPT) compared to particle image velocimetry (PIV) for studying the flow generated by a pitched-blade turbine in single-phase and multi-phase systems[J]. Chem. Eng. Sci., 2009, 64(23): 4955-4968.
[105] GUIDA A, NIENOW A W, BARIGOU M. PEPT measurements of solid-liquid flow field and spatial phase distribution in concentrated monodisperse stirred suspensions[J]. Chem. Eng. Sci., 2010, 65(6): 1905-1914.
[106] LIU L, BARIGOU M. Lagrangian particle tracking in mechanically agitated polydisperse suspensions: multi-component hydrodynamics and spatial distribution[J]. Int. J. Multiphase Flow, 2015, 73: 80-89.
[107] 黄正梁, 王靖岱, 阳永荣. 声波的多尺度分解与搅拌釜中浆液浓度的测量[J]. 化工学报, 2006, 57(9): 2062-2067.
HUANG Z L, WANG J D, YANG Y R. Measurement of slurry concentration in stirred vessel based on AE measurement by wavelet transform[J]. Journal of Chemical Industry and Engineering(China), 2006, 57(9): 2062-2067.
[108] 任聪静, 王靖岱, 张晓欢, 等. 利用声发射技术测量搅拌釜的淤浆悬浮高度[J]. 化工学报, 2008, 59(6): 1383-1389.
REN C J, WANG J D, ZHANG X H, et al. Measurement of slurry suspension height in stirred tank by multi-scale analysis of acoustic emission technology[J]. Journal of Chemical Industry and Engineering(China), 2008, 59(6): 1383-1389.
[109] 任聪静, 王靖岱, 阳永荣, 等. 声波测量在搅拌釜中固体颗粒临界悬浮转速测定的应用[J]. 化工学报, 2008, 59(8): 1986-1991.
REN C J, WANG J D, YANG Y R, et al. Measurement of critical suspension speed for solid particles in stirred vessel based on acoustic method[J]. Journal of Chemical Industry and Engineering(China), 2008, 59(8): 1986-1991.
[110] 胡雨晨, 黄正梁, 王靖岱, 等. 基于Hilbert-Huang变换的搅拌釜临界悬浮转速的声发射测量[J]. 化工学报, 2012, 63(1): 36-41.
HU Y C, HUANG Z L, WANG J D, et al. Measurement of critical suspension speed in stirred tank using acoustic emission technique based on Hilbert-Huang transform[J]. CIESC Journal, 2012, 63(1): 36-41.
[111] MONTANTE G, PAGLIANTI A, MAGELLI F. Analysis of dilute solid-liquid suspensions in turbulent stirred tanks[J]. Chem. Eng. Res. Des., 2012, 90(10): 1448-1456.
[112] FAN L, XU N. Experimental investigation of fibre particles in a turbulent stirred tank with DPIV[J]. Powder Technol., 2016. http://dx.doi.org/10.1016/j.powtec.2016.10.065
[113] GUIRAUD P, COSTES J, BERTRAND J. Local measurements of fluid and particle velocities in a stirred suspension[J]. Chem. Eng. J., 1997, 68(2): 75-86.
[114] DIETEMANN P, RUEFF M. A study of fibre suspension flow by means of Doppler ultrasound velocimetry and image analysis[C]//PAPTAC 90th Annual Meeting. Montreal, Que., Canada, 2004.
[115] EIN-MOZAFFARI F, BENNINGTON C P J, DUMONT G A, et al. Measuring flow velocity in pulp suspension mixing using ultrasonic Doppler velocimetry[J]. Chem. Eng. Res. Des., 2007, 85(5): 591-597.
[116] SARDESHPANDE M V, JUVEKAR V A, RANADE V V. Solid suspension in stirred tanks: UVP measurements and CFD simulations[J]. Can. J. Chem. Eng., 2011, 89(5): 1112-1121.
[117] SHAMLOU P A, KOUTSAKOS E. Solids suspension and distribution in liquids under turbulent agitation[J]. Chem. Eng. Sci., 1989, 44(3): 529-542.
[118] MAGELLI F, FAJNER D, NOCENTINI M, et al. Solid distribution in vessels stirred with multiple impellers[J]. Chem. Eng. Sci., 1990, 45(3): 615-625
[119] RASTEIRO M G, FIGUEIREDO M M, FREIRE C. Modelling slurry mixing tanks[J]. Adv. Powder Tech., 1994, 5(1): 1-14.
[120] SESSIECQ P, MIER P, GRUY F, et al. Solid particles concentration profiles in an agitated vessel[J]. Chem. Eng. Res. Des., 1999, 77(8): 741-746.
[121] MICALE G, MONTANTE G, GRISAFI F, et al. CFD simulation of particle distribution in stirred vessels[J]. Chem. Eng. Res. Des., 2000, 78(3): 435-444.
[122] DERKSEN J J. Highly resolved simulations of solids suspension in a small mixing tank[J]. AIChE J., 2012, 58(10): 3266-3278.
[123] MO J, GAO Z, BAO Y, et al. Suspending a solid sphere in laminar inertial liquid flow-experiments and simulations[J]. AIChE J., 2015, 61(4): 1455-1469.
[124] PRAKASH M, CLEARY P W, HA J, et al. Simulation of suspension of solids in a liquid in a mixing tank using SPH and comparison with physical modelling experiments[J]. Prog. Comput. Fluid Dyn., 2007, 7(2/3/4): 91-100.
[125] DECKER S, SOMMERFELD M. Calculation of particles suspension in agitated vessels with the Euler-Lagrange approach[J]. IChemE Symposium Series, 1996, 140: 71-82.
[126] CHEN X Q, PEREIRA J C F. Computational modeling of a dilute turbulent liquid-solid flow using a Eulerian-Lagrangian approach[J]. Int. J. Num. Methods Heat Fluid Flow, 2000, 10(4): 409-432.
[127] DERKSEN J J. Numerical simulation of solids suspension in a stirred tank[J]. AIChE J., 2003, 49(11): 2700-2714.
[128] ZHANG X, AHMADI G. Eulerian-Lagrangian simulations of liquid-gas-solid flows in three-phase slurry reactors[J]. Chem. Eng. Sci., 2005, 60(18): 5089-5104.
[129] SRINIVASA T, JAYANTI S. An Eulerian/Lagrangian study of solid suspension in stirred tanks[J]. AIChE J., 2007, 53(9): 2461-2469.
[130] LI Z P, DERKSEN J J, GAO Z M. Models and applications for simulating turbulent solid-liquid suspension in stirred tanks[J]. J. Chem. Eng. Jpn., 2015, 48(5): 329-336.
[131] CHOI Y, HUR N. A numerical study on particle suspension in a stirred vessel with Rushton turbine impeller[J]. J. Chem. Eng. Jpn., 2015, 48(5): 367-373.
[132] BARRUE H, BERTRAND J, CRISTOL B, et al. Eulerian simulation of dense solid-liquid suspension in multi-stage stirred vessel[J]. J. Chem. Eng. Jpn., 2001, 34(5): 585-594.
[133] KHOPKAR A R, KASAT G R, PANDIT A B, et al. Computational fluid dynamics simulation of the solid suspension in a stirred slurry reactor[J]. Ind. Eng. Chem. Res., 2006, 45(12): 4416-4428.
[134] MURTHY B N, GHADGE R S, JOSHI J B. CFD simulations of gas-liquid-solid stirred reactor: prediction of critical impeller speed for solid suspension[J]. Chem. Eng. Sci., 2007, 62(24): 7184-7195.
[135] KASAT G R, KHOPKAR A R, RANADE V V, et al. CFD simulation of liquid-phase mixing in solid-liquid stirred reactor[J]. Chem. Eng. Sci., 2008, 63(15): 3877-3885.
[136] GUHA D, RAMACHANDRAN M P, DUDUKOVIC M P, et al. Evaluation of large eddy simulation and Euler-Euler CFD models for solids flow dynamics in a stirred tank reactor[J]. AIChE J., 2008, 54(3): 766-778.
[137] TAMBURINI A, CIPOLLINA A, MICALE G, et al. Dense solid-liquid off-bottom suspension dynamics: simulation and experiment[J]. Chem. Eng. Res. Des., 2009, 87(4): 587-597.
[138] HOSSEINI S, PATEL D, EIN-MOZAFFARI F, et al. Study of solid-liquid mixing in agitated tanks through computational fluid dynamics modeling[J]. Ind. Eng. Chem. Res., 2010, 49(9): 4426-4435.
[139] PANNEERSELVAM R, SAVITHRI S, SURENDER G D. CFD modeling of gas-liquid-solid mechanically agitated contactor[J]. Chem. Eng. Res. Des., 2008, 86(12): 1331-1344.
[140] PANNEERSELVAM R, SAVITHRI S, SURENDER G D. Computational fluid dynamics simulation of solid suspension in a gas-liquid-solid mechanically agitated contactor[J]. Ind. Eng. Chem. Res., 2009, 48(3): 1608-1620.
[141] TAMBURINI A, CIPOLLINA A, MICALE G, et al. CFD simulations of dense solid-liquid suspensions in baffled stirred tanks: prediction of solid particle distribution[J]. Chem. Eng. J., 2013, 223: 875-890.
[142] TAMBURINI A, CIPOLLINA A, MICALE G, et al. CFD simulations of dense solid-liquid suspensions in baffled stirred tanks: prediction of suspension curves[J]. Chem. Eng. J., 2011, 178: 324-341.
[143] LJUNGQVIST M, RASMUSON A. Numerical simulation of the two-phase flow in an axially stirred vessel[J]. Chem. Eng. Res. Des., 2001, 79(5): 533-546.
[144] FLETCHER D F, BROWN G J. Numerical simulation of solid suspension via mechanical agitation: effect of the modeling approach, turbulence model and hindered settling drag law[J]. Int. J. Comp. Fluid Dynam., 2009, 23(2): 173-187.
[145] ZHU H P, ZHOU Z Y, YANG R Y, et al. Discrete particle simulation of particulate systems: theoretical developments[J]. Chem. Eng. Sci., 2007, 62(13): 3378-3396.
[146] ZHOU Z Y, KUANG S B, CHU K W, et al. Discrete particle simulation of particle-fluid flow: model formulations and their applicability[J]. J. Fluid Mech., 2010, 661: 482-510.
[147] SHAO T, HU Y Y, WANG W T, et al. Simulation of solid suspension in a stirred tank using CFD-DEM coupled approach[J]. Chin. J. Chem. Eng., 2013, 21(10): 1069-1081.
[148] PEPIOT P, DESJARDINS O. Numerical analysis of the dynamics of two- and three-dimensional fluidized bed reactors using a Euler-Lagrange approach[J]. Powder Technol., 2012, 220: 104-121.
[149] CAPECELATRO J, DESJARDINS O. A Euler-Lagrange strategy for simulating particle-laden flows[J]. J. Comput. Phys., 2013, 238: 1-31.
[150] GOHEL S, JOSHI S, AZHAR M, et al. CFD modeling of solid suspension in a stirred tank: effect of drag models and turbulent dispersion on cloud height[J]. Int. J. Chem. Eng., 2012. http://dx.doi.org/10.1155/2012/956975.
[151] LOPEZ DE BERTODANO M. Turbulent bubbly two-phase flow in a triangular duct[D]. New York: Rensselaer Polytechnic Institute, 1992.
[152] SIMONIN O, VIOLLET P L. Modelling of turbulent two-phase jets loaded withdiscrete particles[M]// HEWITT G F, MAYINGER F, RIZNIC J R. Phase-interface Phenomena in Multiphase Flow. New York: Hemisphere, 1990: 259-269.
[153] BURNS A D, FRANK T, HAMILL I, et al. The Favre averaged drag model for turbulent dispersion in Eulerian multi-phase flows[C]//Proceedings of the 5th International Conference on Multiphase Flow. Yokohama, Japan, 2004, 4: 1-17.
[154] SCHILLER L, NAUMANN Z. A drag coefficient correlation[J]. Z. Ver. Deutsch. Ing., 1935, 77: 318-323.
[155] MORSI S A, ALEXANDER A J. An investigation of particle trajectories in two-phase flow systems[J]. J. Fluid Mech., 1972, 55(2): 193-208.
[156] CLIFT R, GRACE J R, WEBER M E. Bubbles, Drops, and Particles[M]. New York: Academic Press, 1978.
[157] ISHII M, ZUBER N. Drag coefficient, relative velocity in bubbly, droplet or particulate flows[J]. AIChE J., 1979, 25(5): 843-55.
[158] GIBILARO L G, DI FELICE R, WALDRAM S P. Generalized friction factor and drag coefficient correlations for fluid-particle interactions[J]. Chem. Eng. Sci., 1985, 40(10): 1817-1823.
[159] GIDASPOW D. Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions[M]. San Diego: Academic Press, 1994.
[160] BRUCATO A, GRISAFI F, MONTANTE G. Particle drag coefficients in turbulent fluids[J]. Chem. Eng. Sci., 1998, 53(18): 3295-3314.
[161] HUILIN L, GIDASPOW D. Hydrodynamics of binary fluidization in a riser: CFD simulation using two granular temperatures[J]. Chem. Eng. Sci., 2003, 58(16): 3777-3792.
[162] OCHIENG A, ONYANGO M S. Drag models, solids concentration and velocity distribution in a stirred tank[J]. Powder Technol., 2008, 181(1): 1-8.
[163] TAMBURINI A, CIPOLLINA A, MICALE G, et al. Influence of drag and turbulence modeling on CFD predictions of solid liquid suspensions in stirred vessels[J]. Chem. Eng. Res. Des., 2014, 92(6): 1045-1063.
[164] WADNERKAR D, TADE M O, PAREEK V K, et al. CFD simulation of solid-liquid stirred tanks for low to dense solid loading systems[J]. Particuology, 2016, 29: 16-33.
[165] WEN C Y, YU Y H. Mechanics of fluidization[J]. Chem. Eng. Prog. Symp. Ser., 1966, 62: 100-111.
[166] ERGUN S. Fluid flow through packed columns[J]. Chem. Eng. Prog., 1952, 48(2): 89-94.
[167] PINELLI D, MONTANTE G, MAGELLI F. Dispersion coefficients and settling velocities of solids in slurry vessels stirred with different types of multiple impellers[J]. Chem. Eng. Sci., 2004, 59(15): 3081-3089.
[168] AUBIN J, FLETCHER D F, XUEREB C. Modeling turbulent flow in stirred tanks with CFD: the influence of the modelling approach, turbulence model and numerical scheme[J]. Exp. Therm. Fluid Sci., 2004, 28(5): 431-445.
[169] MONTANTE G, MAGELLI F. Modelling of solids distribution in stirred tanks: analysis of simulation strategies and comparison with experimental data[J]. Int. J. Comput. Fluid Dyn., 2005, 19(3): 253-262.
[170] FENG X, LI X Y, CHENG J C, et al. Numerical simulation of solid-liquid turbulent flow in a stirred tank with a two-phase explicit algebraic stress model[J]. Chem. Eng. Sci., 2012, 82: 272-284.
[171] DERKSEN J J. Long-time solids suspension simulations by means of a large-eddy approach[J]. Chem. Eng. Res. Des., 2006, 84(1): 38-46.
[172] DEEN N G, KUIPERS J A M. Direct numerical simulation (DNS) of mass, momentum and heat transfer in dense fluid-particle systems[J]. Curr. Opin. Chem. Eng., 2014, 5: 84-89.
[173] ŠVEC O, SKO?EK J, STANG H, et al. Free surface flow of a suspension of rigid particles in a non-Newtonian fluid: a lattice Boltzmann approach[J]. J. Non-Newtonian Fluid Mech., 2012, 179/180: 32-42.
[174] BISWAS P K, DEV S C, GODIWALLA K M, et al. Effect of some design parameters on the suspension characteristics of a mechanically agitated sand-water slurry system[J]. Mater. Des., 1999, 20(5): 253-265.
[175] ÖZCAN-TA?KIN G, WEI H Y. The effect of impeller-to-tank diameter ratio on draw down of solids[J]. Chem. Eng. Sci., 2003, 58(10): 2011-2022.
[176] NOGUEIRA E S, PINTO J C, VIANNA JR A S. Analysis of energy dissipation in stirred suspension polymerisation reactors using computational fluid dynamics[J]. Can. J. Chem. Eng., 2012, 90(4): 983-995.

[1] LI Ting, JIA Zhuotai, ZHANG Qinghua, YANG Chao, MAO Zaisha. Comparison of macro-mixing characteristics of a stirred tank with different impellers [J]. CIESC Journal, 2019, 70(1): 32-38.
[2] XIONG Pan, YAN Shuguang, LIU Weiyin. Structure optimization of cyclone based on response surface method [J]. CIESC Journal, 2019, 70(1): 154-160.
[3] CHEN Wei, REN Ying. Similarity between fluidization and phase transition [J]. CIESC Journal, 2019, 70(1): 1-9.
[4] LIU Yingjie, ZHU Jesse. Flow behaviors in bubble-driven liquid-solid fluidized-bed adopting binary particles [J]. CIESC Journal, 2019, 70(1): 91-98.
[5] DU Dongxing, ZHENG Lichen, ZHANG Xu, SUN Guolong, LI Yingge, CHAO Kun. Comparative experimental studies on oil recovery characteristics of supercritical CO2 and foam fluid in porous media [J]. CIESC Journal, 2018, 69(S1): 58-63.
[6] YANG Shujun, WEI Yucong, WOO Meng Wai, WU Winston Duo, CHEN Xiao Dong, Xiao Jie. Numerical simulation of mono-disperse droplet spray dryer under influence of swirling flow [J]. CIESC Journal, 2018, 69(9): 3814-3824.
[7] ZHU Litao, LUO Zhenghong. Application of magnetic resonance imaging to multiphase fluid hydrodynamics [J]. CIESC Journal, 2018, 69(9): 3765-3773.
[8] GU Xin, LUO Yuankun, XIONG Xiaochao, WANG Ke, TAO Zhilin. Influence of twisty flow heat exchanger's structural parameters on flow field and temperature field [J]. CIESC Journal, 2018, 69(8): 3390-3397.
[9] CHEN Guoqi, SUN Jianjun, SUN Dianfeng, MA Chenbo. Performance analysis of double-end self-pumping mechanical seal for main coolant pump of sodium-cooled fast reactor [J]. CIESC Journal, 2018, 69(8): 3565-3576.
[10] HE Denghui, CHEN Senlin, BAI Bofeng. New model for measuring stratified gas-liquid flow by Chisholm-model-based V-cone flowmeter [J]. CIESC Journal, 2018, 69(8): 3428-3435.
[11] HU Rentao, REN Libo, WANG Dewu, LIU Yan, ZHANG Shaofeng. Numerical simulation of fully developed liquid-solid flow in vertical narrow channel [J]. CIESC Journal, 2018, 69(8): 3408-3417.
[12] CHU Tong, YANG Yuesuo, LU Ying, WU Yuhui, CHEN Yu, DU Xinqiang. Thermal enhanced air sparging for oil contamination remediation in shallow groundwater of cold regions [J]. CIESC Journal, 2018, 69(8): 3701-3710.
[13] SUN Ziwen, CHEN Dailin, ZHONG Wenqi, YU Ai-Bing. MP-PIC simulation of particle clusters in fast fluidized bed risers [J]. CIESC Journal, 2018, 69(8): 3443-3451.
[14] WU Yun, DU Xiaolei, SONG Kai, LIU Hongyu, WANG Jie, WANG Erpo. Numerical simulation analysis of flow characteristics of suspended packing in biological contact oxidation tank [J]. CIESC Journal, 2018, 69(7): 3242-3248.
[15] DU Min, HUANG Bin, LU Qicheng, GONG Jun, LUO Ming, WANG Zhuliang. Subsequent development of collided droplets in impinging streams [J]. CIESC Journal, 2018, 69(5): 2023-2031.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!