CIESC Journal ›› 2017, Vol. 68 ›› Issue (1): 154-162.doi: 10.11949/j.issn.0438-1157.20161055

Previous Articles     Next Articles

Porous hydrogen-bonded organometallic frameworks for adsorption separation of acetylene and carbon dioxide

XIE Danyan, XING Huabin, ZHANG Zhiguo, YANG Qiwei, YANG Yiwen, REN Qilong, BAO Zongbi   

  1. Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310029, Zhejiang, China
  • Received:2016-07-26 Revised:2016-10-03 Online:2017-01-05
  • Contact: 10.11949/j.issn.0438-1157.20161055 E-mail:baozb@zju.edu.cn
  • Supported by:

    supported by the National Natural Science Foundation of China (21376205,U1407134).

Abstract:

Two porous hydrogen-bonded organometallic frameworks, termed as MPM-1-Br and MPM-1-Cl, were synthesized from adenine and CuBr2(or CuCl2) at room temperature by slow diffusion method.The synthesized materials were characterized by analysis techniques including SEM, PXRD, TGA and specific surface area analysis.Single-component adsorption isotherms for acetylene and carbon dioxide on these materials were also determined.The experimental results revealed that MPM-1-Br and MPM-1-Cl have moderately high BET surface(373 m2·g-1, 417 m2·g-1), and they show good thermo stability at temperature up to 240℃.The calculations were performed using the ideal adsorbed solution theory(IAST) based on the single-component adsorption isotherms, obtaining the adsorption selectivity of MPM-1-Br and MPM-1-Cl for binary mixture of acetylene and carbon dioxide(50:50, volume ratio) to be 3.8 and 3.0 at temperature of 298 K and total pressure of 100 kPa, respectively, which are comparable to those on HKUST-1 and UTSA-30.

Key words: hydrogen-bonded organometallic framework, low diffusion method, adsorption, separation, acetylene, carbon dioxide

CLC Number: 

  • TQ021.4

[1] ZHAO X, XING H, YANG Q, et al. Differential solubility of ethylene and acetylene in room-temperature ionic liquids:a theoretical study[J]. J. Phys. Chem. B, 2012, 116(13):3944-53.
[2] EGUCHI R, UCHIDA S, MIZUNO N. Inverse and high CO2/C2H2 sorption selectivity in flexible organic-inorganic ionic crystals[J]. Angewandte Chemie International Edition, 2012, 51(7):1635-1639.
[3] LI P, HE Y, ZHAO Y, et al. A rod -packing microporous hydrogen-bonded organic framework for highly selective separation of C2H2/CO2 at room temperature[J]. Angewandte Chemie International Edition, 2015, 54(2):574-577.
[4] RAO X, CAI J, YU J, et al. A microporous metal-organic framework with both open metal and Lewis basic pyridyl sites for high C2H2 and CH4 storage at room temperature[J]. Chemical Communications, 2013, 49(60):6719-6721.
[5] DUAN J, JIN W, KRISHNA R. Natural gas purification using a porous coordination polymer with water and chemical stability[J]. Inorganic Chemistry, 2015, 54(9):4279-4284.
[6] YOON J W, LEE J S, LEE S, et al. Adsorptive separation of acetylene from light hydrocarbons by mesoporous iron trimesate MIL-100(Fe)[J]. Chemistry-A European Journal, 2015, 21(50):18431-18438.
[7] CHANG G, LI B, WANG H, et al. Control of interpenetration in a microporous metal-organic framework for significantly enhanced C2H2/CO2 separation at room temperature[J]. Chemical Communications, 2016, 52(17):3494-3496.
[8] DAVIS M E. Ordered porous materials for emerging applications[J]. Nature, 2002, 417(6891):813-821.
[9] ZHANG Z, ZHAO Y, GONG Q, et al. MOFs for CO2 capture and separation from flue gas mixtures:the effect of multifunctional sites on their adsorption capacity and selectivity[J]. Chemical Communications, 2013, 49(7):653-661.
[10] HE Y, ZHOU W, QIAN G, et al. Methane storage in metal-organic frameworks[J]. Chemical Society Reviews, 2014, 43(16):5657-5678.
[11] FURUKAWA H, CORDOWA K E, O'KEEFFE M, et al. The chemistry and applications of metal-organic frameworks[J]. Science, 2013, 341(6149):1230444.
[12] 李亮莎, 王可可, 黄宏亮, 等. 高稳定铪金属-有机骨架材料的合成及二氧化碳捕获性能[J]. 化工学报, 2014, 65(5):1706-1715. LI L S, WANG K K, HUANG H L, et al. Synthesis of exceptional stable Hf-based metal-organic frameworks:characterization, stability and CO2 adsorption performance[J]. CIESC Journal, 2014, 65(5):1706-1715.
[13] LI J R, KUPPLER R J, ZHOU H C. Selective gas adsorption and separation in metal-organic frameworks[J]. Chemical Society Reviews, 2009, 38(5):1477-1504.
[14] CHUI S S Y, LO S M F, CHARMANT J P H, et al. A chemically functionalizable nanoporous material[Cu3(TMA)2(H2O)3]n[J]. Science, 1999, 283(5405):1148-1150.
[15] 乔智威, 杨仁党, 王海辉, 等. 面向生物甲烷分离的不同金属配位金属-有机骨架材料的分子设计[J]. 化工学报, 2014, 65(5):1729-1735. QIAO Z W, YANG R D, WANG H H, et al. Molecular design of metal-organic frameworks with different metal ligands for bio-methane separation[J]. CIESC Journal, 2014, 65(5):1729-1735.
[16] HE Y, KRISHNA R, CHEN B. Metal-organic frameworks with potential for energy-efficient adsorptive separation of light hydrocarbons[J]. Energy & Environmental Science, 2012, 5(10):9107-9120.
[17] 杨宵, 刘晶, 胡建波. 氢气在共价有机骨架材料中的吸附机理[J]. 化工学报, 2015, 66(7):2540-2546. YANG X, LIU J, HU J B. Adsorption mechanism of H2 on covalent organic frameworks[J]. CIESC Journal, 2015, 66(7):2540-2546.
[18] MILLWARD A R, YAGHI O M. Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature[J]. Journal of the American Chemical Society, 2005, 127(51):17998-17999.
[19] MATSUDA R, KITAULA R, KITAGAWA S, et al. Highly controlled acetylene accommodation in a metal-organic microporous material[J]. Nature, 2005, 436(7048):238-241.
[20] TIAN J, THALLAPALLY P K, MCGRAIL B P. Porous organic molecular materials[J]. CrystEngComm, 2012, 14(6):1909-1919.
[21] HISAKI I, NAKAGAWA S, TOHNAI N, et al. A C3-symmetric macrocycle-based, hydrogen-bonded, multiporous hexagonal network as a motif of porous molecular crystals[J]. Angewandte Chemie International Edition, 2015, 54(10):3008-3012.
[22] LI P, HE Y, ZHAO Y, et al. A rod-packing microporous hydrogen-bonded organic framework for highly selective separation of C2H2/CO2 at room temperature[J]. Angewandte Chemie International Edition, 2015, 54(2):574-577.
[23] LI P, HE Y, ARMAN H D, et al. A microporous six-fold interpenetrated hydrogen-bonded organic framework for highly selective separation of C2H4/C2H6[J]. Chemical Communications, 2014, 50(86):13081-13084.
[24] LUO X Z, JIA X J, DENG J H, et al. A microporous hydrogen-bonded organic framework:exceptional stability and highly selective adsorption of gas and liquid[J]. Journal of the American Chemical Society, 2013, 135(32):11684-11687.
[25] WANG H, LI B, WU H, et al. A flexible microporous hydrogen-bonded organic framework for gas sorption and separation[J]. Journal of the American Chemical Society, 2015, 137(31):9963-9970.
[26] YANG W, LI B, WANG H, et al. A microporous porphyrin-based hydrogen-bonded organic framework for gas separation[J]. Crystal Growth & Design, 2015, 15(4):2000-2004.
[27] CHEN T H, POPOV I, KAVEEVIVITCHAI W, et al. Thermally robust and porous noncovalent organic framework with high affinity for fluorocarbons and CFCs[J]. Nature Communications, 2014, 5(1):5131.
[28] ZENTNER C A, LAI H W H, GREENFIELD J T, et al. High surface area and Z' in a thermally stable 8-fold polycatenated hydrogen-bonded framework[J]. Chemical Communications, 2015, 51(58):11642-11645.
[29] ZHOU D D, XU Y T, LIN R B, et al. High-symmetry hydrogen-bonded organic frameworks:air separation and crystal-to-crystal structural transformation[J]. Chemical Communications, 2016, 52(28):4991-4994.
[30] THOMAS-GIPSON J, BEOBIDE G, CASTILLO O, et al. Paddle-wheel shaped copper (Ⅱ)-adenine discrete entities as supramolecular building blocks to afford porous supramolecular metal-organic frameworks (SMOFs)[J]. Crystal Growth & Design, 2014, 14(8):4019-4029.
[31] THOMAS-GIPSON J, BEOBIDE G, CASTILLO O, et al. Porous supramolecular compound based on paddle-wheel shaped copper (Ⅱ)-adenine dinuclear entities[J]. CrystEngComm, 2011, 13(10):3301-3305.
[32] NUGENT P S, RHODUS V L, PHAM T, et al. A robust molecular porous material with high CO2 uptake and selectivity[J]. Journal of the American Chemical Society, 2013, 135(30):10950-10953.
[33] LEE J M, PALGUNADI J, KiIM J H, et al. Selective removal of acetylenes from olefin mixtures through specific physicochemical interactions of ionic liquids with acetylenes[J]. Physical Chemistry Chemical Physics, 2010, 12(8):1812-1816.
[34] ZHAO X, XING H, YANG Q, et al. Differential solubility of ethylene and acetylene in room-temperature ionic liquids:a theoretical study[J]. The Journal of Physical Chemistry B, 2012, 116(13):3944-3953.
[35] PALGUNADI J, HONG S Y, LEE J K, et al. Correlation between hydrogen bond basicity and acetylene solubility in room temperature ionic liquids[J]. The Journal of Physical Chemistry B, 2011, 115(5):1067-1074.
[36] BURD S D, MA S, PERMAN J A, et al. Highly selective carbon dioxide uptake by[Cu(bpy-n)2(SiF6)](bpy-1=4,4'-Bipyridine; bpy-2=1,2-bis (4-pyridyl) ethene)[J]. Journal of the American Chemical Society, 2012, 134(8):3663-3666.
[37] MOHAMED M H, ELSAIDI S K, WOJTAS L, et al. Highly selective CO2 uptake in uninodal 6-connected "mmo" nets based upon MO42-(M=Cr, Mo) pillars[J]. Journal of the American Chemical Society, 2012, 134(48):19556-19559.
[38] XU H, HE Y, ZHANG Z, et al. A microporous metal-organic framework with both open metal and Lewis basic pyridyl sites for highly selective C2H2/CH4 and C2H2/CO2 gas separation at room temperature[J]. Journal of Materials Chemistry A, 2013, 49(60):77-81.
[39] HE Y, XIANG S, ZHANG Z, et al. A microporous lanthanide-tricarboxylate framework with the potential for purification of natural gas[J]. Chemical Communications, 2012, 48(88):10856-10858.
[40] XIANG S, ZHOU W, GALLENGOS J M, et al. Exceptionally high acetylene uptake in a microporous metal-organic framework with open metal sites[J]. Journal of the American Chemical Society, 2009, 131(34):12415-12419.
[41] SUMIDA K, ROGOW D L, MASON J A, et al. Carbon dioxide capture in metal-organic frameworks[J]. Chemical Reviews, 2011, 112(2):724-781.
[42] CUI XL, CHEN K J, XING H B, et al. Pore chemistry and size control in by brid porous materials for acetylene capture from ethylene[J]. Science, 2016, 353(6295):141-144.
[43] LI P, HE Y, GUANG J, et al. A homochiral microporous hydrogen-bonded organic framework for highly enantioselective separation of secondary alcohols[J]. Journal of the American Chemical Society, 2014, 136(2):547-549.
[44] LU J, PEREZ-KRAP C, SUYETIN M, et al. A robust binary supramolecular organic framework (SOF) with high CO2 adsorption and selectivity[J]. Journal of the American Chemical Society, 2014, 136(37):12828-12831.
[45] ELSAIDI S K, MOHAMED M H, SCHAEL H T, et al. Hydrophobic pillared square grids for selective removal of CO2 from simulated flue gas[J]. Chemical Communications, 2015, 51(94):15530-15533.

[1] LIU Zhongyan, SUN Dahan, JIN Xu, WANG Tianhao, MA Yitai. Evaluation research on boiling heat transfer model of CO2 in tube [J]. CIESC Journal, 2019, 70(1): 56-64.
[2] WANG Jiao, JIN Zhejunyu, DING Kaining, ZHAO Weiwei, PU Xiaohua, LI Zongxiao. Monte Carlo simulation of effect of MoO3 doping on Cu(Ⅱ) adsorption of silica [J]. CIESC Journal, 2019, 70(1): 355-359.
[3] CAI Jingtao, LI Daixi, LIU Baolin, LUAN Hansen, GUO Baisong, WEI Dongqing, WANG Hao. Controllable crystallization of urea (520) crystal plane by molecular simulation [J]. CIESC Journal, 2019, 70(1): 128-135.
[4] ZHOU Sunxi, ZHANG Xuelai, LIU Sheng, CHEN Qiyang, XU Xiaofeng, WANG Yinghui. Preparation and properties of decyl alcohol-palmitic acid/expanded graphite low temperature composite phase change material [J]. CIESC Journal, 2019, 70(1): 290-297.
[5] LEI Dehui, PENG Tongjiang, SUN Hongjuan, TANG Guangping, YANG Jianzhao, REN Yazhou, WANG Lili. Influence of reduction temperature of graphene oxide on cross sensitivity between humidity and formaldehyde [J]. CIESC Journal, 2019, 70(1): 309-318.
[6] WU Yuanmo, ZHANG Shouyu, ZHANG Hua, MU Chen, LI Hao, SONG Xiaobing, LYU Junfu. Relationship between pore structure and moisture reabsorption of lignite dewatered by high temperature drying process [J]. CIESC Journal, 2019, 70(1): 199-206.
[7] LIU Hui'e, HUANG Yangfan, MA Yanbing, CHEN Shuang. Saturated adsorption capacities of graphene aerogels on organics [J]. CIESC Journal, 2019, 70(1): 280-289.
[8] WANG Cailin, GU Shuaiwei, LI Yuxing, HU Qihui, TENG Lin, WANG Jinghan, MA Hongtao, ZHANG Datong. Experimental study on foaming characteristics of CO2-crude oil mixture [J]. CIESC Journal, 2019, 70(1): 251-260.
[9] WANG Zizong, LIU Hongqian, WANG Jiming. Research and optimization of separation technology of methanol to propylene [J]. CIESC Journal, 2019, 70(1): 136-145.
[10] LI Jingyan, LIU Zhongliang, ZHOU Yu, LI Yanxia. Study of thermal-hydrologic-mechanical numerical simulation model on CO2 plume geothermal system [J]. CIESC Journal, 2019, 70(1): 72-82.
[11] DU Dongxing, ZHENG Lichen, ZHANG Xu, SUN Guolong, LI Yingge, CHAO Kun. Comparative experimental studies on oil recovery characteristics of supercritical CO2 and foam fluid in porous media [J]. CIESC Journal, 2018, 69(S1): 58-63.
[12] JIA Xiaoxia, WANG Li, YUAN Ning, YANG Jiangfeng, LI Jinping. CH4/N2 adsorption separation research of MOFs with divalent Cr/Mo/Ni unsaturated metal sites [J]. CIESC Journal, 2018, 69(9): 3896-3904.
[13] HE Kaiwu, TANG Siyang, LIU Changjun, YUE Hairong, LIANG Bin. Performance of amine functionalized mesoporous adsorbents for CO2 adsorption [J]. CIESC Journal, 2018, 69(9): 3887-3895.
[14] LI Yajuan, ZHAO Chuanqi, YANG Yuesuo, WANG Yuanyuan, SONG Xiaoming. Mechanism and model of dynamic adsorption of glyphosate contaminated water on graphene-based iron oxide composite [J]. CIESC Journal, 2018, 69(9): 3944-3953.
[15] YAO Yingying, GUO Li, HU Zhongqiu, QUAN Qu, DU Dongyun. Separation of copper and arsenic in copper smelting dust by Na2S-NaOH leaching assisted with ultrasound method [J]. CIESC Journal, 2018, 69(9): 3983-3992.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!