CIESC Journal ›› 2016, Vol. 67 ›› Issue (7): 2793-2798.doi: 10.11949/j.issn.0438-1157.20160160

Previous Articles     Next Articles

Hydrogenation of high-concentration monovinylacetylene for butadiene production over Pd-Pb/SiO2 catalysts

ZHANG Yike1, JIA Zekun1, ZHANG Shuai1, ZHEN Bin1,2, HAN Minghan1   

  1. 1. Department of Chemical Engineering, Tsinghua University, Beijing 100084, China;
    2. College of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
  • Received:2016-02-15 Revised:2016-03-31 Online:2016-07-05


The hydrogenation of high-concentration monovinylacetylene over silica supported Pd-Pb bimetallic catalysts was investigated. It showed that the appropriate presence of Pb can prevent Pd nanoparticles from aggregation, hence facilitated the improvement of catalytic activity, i.e. the optimal molar ratio of Pb to Pd of 0.2. With the molar ratio of Pb to Pd above 0.2, Pd-Pb alloy can be formed, which causes catalytic activity loss. The positive correlation between the catalytic activity and the electron bonding energy of Pd 3d was manifested by X-ray photoelectron spectra. The temperature for PdO reduction exhibited a remarkable influence on the structure and the activity of the catalysts. The PdO reduction at 350℃ of the catalyst was incomplete thus with low activity. At 450℃ of the reduction temperature, it caused Pd nanoparticle sintering, hence with low activity and low butadiene selectivity. As a result, the optimal reduction temperature was 400℃. After 40 h, the catalyst was deactivated due to the blockage of pore by coke formation on catalyst surface. Subsequently, the improvement of anti-coking ability and the lifetime of the catalyst will be of interest.

Key words: hydrogenation, catalysts, catalysis, monovinylacetylene, butadiene

CLC Number: 

  • O643

[1] 张梁, 田靖, 刘兵. 丁烯氧化脱氢制丁二烯反应过程研究[J]. 天然气化工, 2015, 40(4): 15-18. ZHANG L, TIAN J, LIU B. Study on reaction process for oxidative dehydrogenation of 1-butene to butadiene [J]. Nat. Gas. Chem. Ind., 2015, 40(4): 15-18.
[2] 曾少娟, 田肖, 董海峰, 等. 丁二烯抽提工艺中离子液体添加剂的筛选及分离性能[J]. 化工学报, 2014, 65(6): 2120-2129. ZENG S J, TIAN X, DONG H F, et al. Selection and separation performance of ionic liquid as additive in butadiene extraction with CAN [J]. CIESC Journal, 2014, 65(6): 2120-2129.
[3] 常红, 童莉, 李广茹, 等. 丁二烯生产技术应用及发展建议[J]. 现代化工, 2013, 33(5): 8-12. CHANG H, TONG L, LI G R, et al. Suggestions for application and development of butadiene production technology [J]. Mod. Chem. Ind., 2013, 33(5): 8-12.
[4] LYNCH M. Manufacture and use of chloroprene monomer [J]. Chem-Biol. Interact., 2001, 135/136: 155-167.
[5] LIU J G, ZUO Y Z, HAN M H, et al. Stability improvement of the Nieuwland catalyst in the dimerization of acetylene to monovinylacetylene [J]. J. Nat. Gas Chem., 2012, 21(5): 495-500.
[6] LIU J G, ZUO Y Z, HAN M H, et al. Improvement of anhydrous catalyst stability in acetylene dimerization by regulating acidity [J]. J. Chem. Technol. Biotechnol., 2013, 88(3): 408-414.
[7] LIU J G, HAN M H, WANG Z W. Effect of solvent on catalytic performance of anhydrous catalyst in acetylene dimerization to monovinylacetylene [J]. J. Energy Chem., 2013, 22(4): 599-604.
[8] MOLNÁR Á, SÁRKÁNY A, MÓNIKA V. Hydrogenation of carbon-carbon multiple bonds: chemo-, regio- and stereo-selectivity [J]. J. Mol. Catal. A-Chem., 2001, 173(1/2): 185-221.
[9] BRIDIER B, KARHÁNEK D, PÉREZ-RAMÍREZ J, et al. Molecular understanding of enyne hydrogenation over palladium and copper catalysts [J]. ChemCatChem, 2012, 4(9): 1420-1427.
[10] CRESPO-QUESADA M, CARDENAS-LIZANA F, DESSIMOZ A L, et al. Modern trends in catalyst and process design for alkyne hydrogenations [J]. ACS Catal., 2012, 2(8): 1773-1786.
[11] 徐海升, 李谦定, 马建平. 碳四馏分选择加氢研究进展[J]. 现代化工, 2002, 22(8): 9-12. XU H S, LI Q D, MA J P. Advances in selective hydrogenation of C4 fraction [J]. Mod. Chem. Ind., 2002, 22(8): 9-12.
[12] DORBON M, HUGUES F, VILTARD J C, et al. Process for obtaining butane: US 6242662 [P]. 2001-10-22.
[13] ZHEN B, CHEN W Q, JIA Z K, et al. Continuous hydrogenation of monovinylacetylene for 1, 3-butadiene production catalyzed by ionic liquid stabilized Pd nanoparticles [J]. Catal. Lett., 2014, 144(12): 2216-2220.
[14] GOETZ J, VOLPE M A, GIGOLA C E, et al. Low-loaded Pd-Pb/α-Al2O3 catalysts: effect of alloying in the hydrogenation of buta-1, 3-diene and hydrogenation and isomerization of butenes [J]. J. Catal., 2001, 199(2): 338-345.
[15] GOETZ J, VOLPE M A, SICA A M, et al. Low-loaded Pd-Pb/α-Al2O3 catalysts: indication of alloy formation from FTIR and X-ray photoelectron spectroscopy[J]. J. Catal., 1997, 167(2): 314-323.
[16] LEE J H, KIM S K, AHN I Y, et al. Performance of Pd-Ag/Al2O3 catalysts prepared by the selective deposition of Ag onto Pd in acetylene hydrogenation [J]. Catal. Commun., 2011, 12(13): 1251-1254.
[17] KIM S K, LEE J H, AHN I Y, et al. Performance of Cu-promoted Pd catalysts prepared by adding Cu using a surface redox method in acetylene hydrogenation [J]. Appl. Catal. A-Gen., 2011, 401(1/2): 12-19.
[18] AHN Y I, KIM W J, MOON S H. Performance of La2O3- or Nb2O5- added Pd/SiO2 catalysts in acetylene hydrogenation [J]. Appl. Catal. A-Gen., 2006, 308: 75-81.
[19] KONTAPAKDEE K, PANPRANOT J, PRASERTHDAM P. Effect of Ag addition on the properties of Pd-Ag/TiO2 catalysts containing different TiO2 crystalline phases [J]. Catal. Commun., 2007, 8(12): 2166-2170.
[20] 徐立英, 乐毅, 朱云仙, 等. 碳四馏分选择加氢工艺及催化剂的研究[J]. 石油化工, 2001, 30(9): 681-685. XU L Y, LE Y, ZHU Y X, et al. The process of C4 fraction selective hydrogenation and the catalyst [J]. Petrochem. Techno., 2001, 30(9): 681-685.
[21] GIGOLA C E, ADURIZ H R, BODNARIUK P. Particle size effect in the hydrogenation of acetylene under industrial conditions [J]. Appl. Catal., 1986, 27(1): 133-144.
[22] YANG B, BURCH R, HARDACRE C, et al. Mechanistic study of 1, 3-butadiene formation in acetylene hydrogenation over the Pd-based catalysts using density functional calculations [J]. J. Phys. Chem. C, 2014, 118(3): 1560-1567.
[23] 朱警, 戴伟, 穆玮, 等. 选择加氢催化剂载体氧化铝的改性及其工业应用(Ⅰ)[J]. 化工进展, 2004, 23(2): 192-194. ZHU J, DAI W, MU W, et al. Modification of aluminum oxide supporter for selective hydrogenation catalysts and its industrial application (Ⅰ) [J]. Chem. Ind. Eng. Prog., 2004, 23(2): 192-194.
[24] 穆玮, 朱警, 戴伟, 等. 选择加氢催化剂载体氧化铝的改性及其工业应用(Ⅱ)[J]. 化工进展, 2004, 23(3): 300-303. MU W, ZHU J, DAI W, et al. Modification of aluminum oxide supporter for selective hydrogenation catalysts and its industrial application (Ⅱ) [J]. Chem. Ind. Eng. Prog., 2004, 23(3): 300-303.

[1] ZHU Yi, WANG Hao, CHEN Liping, GUO Zichao, HE Zhongqi, CHEN Wanghua. Calculate time to maximum rate under adiabatic condition by numerical calculation method [J]. CIESC Journal, 2019, 70(1): 379-387.
[2] CHEN Chen, WANG Ying, LIU Hong, CHEN Yan, YAO Mingdong, XIAO Wenhai. Exploring the key structural properties affecting the function of multi-step phytoene dehydrogenase CrtI [J]. CIESC Journal, 2019, 70(1): 189-198.
[3] CHEN Xiuying, XIE Huilin, HU Wenbin, ZHOU Xinhua, ZHOU Hongjun, SHU Xugang. Preparation and characterization of MCM-41 supported Pt-Al catalysts [J]. CIESC Journal, 2018, 69(S1): 72-79.
[4] GENG Lili, YANG Kaixu, ZHANG Nuowei, CHEN Binghui. Synergetic effect of Ru and Cu on catalytic wet oxidation of ammonia-wastewater [J]. CIESC Journal, 2018, 69(9): 3869-3878.
[5] NIE Shidong, LI Jiangtao, ZHANG Zhiying, LIU Yun, LIU Chunyan. Synthesis and properties of hierarchical structure silver micro-nanocrystals [J]. CIESC Journal, 2018, 69(9): 4090-4096.
[6] CUI Jiandong, CUI Zhaohui, SU Zhiguo, ZHENG Chunyang, MA Guanghui, ZHANG Songping. Bioactive coating prepared by bio-3D printing of castor oil-based waterborne polyurethane mixed with carbonic anhydrase [J]. CIESC Journal, 2018, 69(8): 3577-3584.
[7] WANG Jie, ZHANG Yin, GUO Jianjian, ZHAO Lili, ZHAO Yongxiang. γ-Valerolactone synthesis from levulinic acid hydrogenation over Ni/ZrO2-SiO2 catalyst [J]. CIESC Journal, 2018, 69(8): 3452-3459.
[8] YIN Yue, YUAN Linjiang, NIU Yuwei. Relationship between liquid change in dual chambers and performance of electricity production in DCMFC [J]. CIESC Journal, 2018, 69(8): 3605-3610.
[9] HUANG Pan, LIU Zhen, SHAO Yunqi, DENG Shifeng, LIU Boping. Influences of organic additives on inhibiting by-products in zinc-catalyzed synthesis of alkynylsilane [J]. CIESC Journal, 2018, 69(7): 2993-3000.
[10] ZHANG Liang, LIU Xiaochen, LIU Guiyan, LÜ Bo, FENG Xudong, LI Chun. Energy drive and regeneration in biotransformation [J]. CIESC Journal, 2018, 69(7): 2807-2814.
[11] YUE Dongmin, ZHANG Qianzhi, SUN De, LI Bingbing, MAO Qinye, PENG Congkang. Preparation and properties of PVA/SO42--AAO catalytic-pervaporation difunctional membrane for ethyl acetate synthesis [J]. CIESC Journal, 2018, 69(6): 2775-2781.
[12] TANG Cunduo, SHI Hongling, HE Zihan, DING Pengju, JIAO Zhujin, KAN Yunchao, YAO Lunguang. Green biosynthesis of phenylglyoxylic acid by biotransformation using recombinant Escherichia coli whole cells [J]. CIESC Journal, 2018, 69(6): 2627-2631.
[13] LI Haitao, NIU Zhuzhu, YANG Guofeng, ZHANG Hongxi, WANG Zhipeng, ZHAO Yongxiang. Effect of Cu2O/TiO2 catalyst support in formaldehyde ethynylation [J]. CIESC Journal, 2018, 69(6): 2512-2518.
[14] TANG Weiwei, YAO Jianlong, XU Xiangsheng, YAN Xinhuan. L-alanine hydrogenation over RuPd bimetallic catalysts [J]. CIESC Journal, 2018, 69(6): 2503-2511.
[15] YIN Andong, DENG Wenyi, MA Jingchen, SU Yaxin. Properties on NO removal over pyrolyzed sludge carbon [J]. CIESC Journal, 2018, 69(6): 2655-2663.
Full text



No Suggested Reading articles found!