CIESC Journal ›› 2016, Vol. 67 ›› Issue (9): 3902-3909.DOI: 10.11949/j.issn.0438-1157.20160134

Previous Articles     Next Articles

Simultaneous control of PM2.5 and SO3 by chemical agglomeration collaborative electrostatic precipitation

HU Bin1, LIU Yong1, YANG Chunmin2, HOU Dawei1, YUAN Zhulin1, YANG Linjun1   

  1. 1 Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, Jiangsu, China;
    2 School of Electric Power Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
  • Received:2016-01-29 Revised:2016-03-24 Online:2016-09-05 Published:2016-09-05
  • Supported by:

    supported by the National Basic Research Program of China (2013CB228505).

化学团聚促进电除尘脱除烟气中PM2.5和SO3

胡斌1, 刘勇1, 杨春敏2, 侯大伟1, 袁竹林1, 杨林军1   

  1. 1 东南大学能源热转换及其过程测控教育部重点实验室, 江苏 南京 210096;
    2 中国矿业大学电力工程学院, 江苏 徐州 221116
  • 通讯作者: 杨林军
  • 基金资助:

    国家重点基础研究发展计划项目(2013CB228505)。

Abstract:

Chemical agglomeration is one of the effective technology to realize ultar-low emission for coal-fired power plants. The removal of PM2.5 and SO3 from coal combustion by chemical agglomeration was investigated experimentally based on the coal-fired thermal system. The chemical composition of fine particles, the changes of particle size and the concentration of PM2.5 and SO3 were investigated at the chemical reunion chamber and electric outlet. The mechanism of removing PM2.5 and SO3 was analyzed. The results showed that the chemical agglomeration evaporation can increase the average size of particles from 0.1 μm to 3 μm, while the particle compositions were mainly uncharged. The fine particle number concentration was reduced from 5.8×104 cm-3 to 3.2×104 cm-3 and the electric efficiency was increased by 45% at the electric outlet. When SO3 concentration in flue gas increased from 40 mg·m-3 to 100 mg·m-3, the removal efficiency of SO3 of a single chemical agglomeration increased from 42% to 68%, coordinated the electric SO3 removal efficiency by 66% to 86%. The chemical agglomeration collaborative electrostatic precipitation can be efficient for the removal of PM2.5 and SO3.

Key words: chemical agglomeration, PM2.5, SO3, simultaneous control

摘要:

化学团聚技术是实现燃煤烟气超净排放的有效技术之一,采用燃煤热态实验系统,分析探讨化学团聚技术促进电除尘对PM2.5和SO3的脱除作用,考察了化学团聚剂添加前后细颗粒化学组分及粒径的变化,以及化学团聚室、电除尘出口PM2.5和SO3浓度变化,并分析促进PM2.5和SO3脱除的机理。结果表明:喷入化学团聚剂后,细颗粒粒径峰值由0.1 μm增大到3 μm左右,细颗粒化学组分基本保持不变;电除尘出口细颗粒物数量浓度由5.8×104 cm-3降低到3.2×104 cm-3,电除尘效率提高45%;烟气SO3浓度由40 mg·m-3提高到100 mg·m-3时,单一化学团聚对SO3的脱除效率由42%提高到68%,协同电除尘SO3脱除效率由66%提高到86%。

关键词: 化学团聚, PM2.5, SO3, 协同脱除

CLC Number: