CIESC Journal ›› 2016, Vol. 67 ›› Issue (1): 6-13.doi: 10.11949/j.issn.0438-1157.20151488

Previous Articles     Next Articles

Perspective on catalyst investigation for CO2 conversion and related issues

LIU Changjun1, GUO Qiuting1, YE Jingyun1, SUN Kaihang1, FAN Zhigang1, GE Qingfeng1,2   

  1. 1 Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China;
    2 Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL 62901, USA
  • Received:2015-09-23 Revised:2015-11-05 Online:2016-01-05
  • Supported by:

    supported by the National Science Fund for Distinguished Young Scholars of China(20225618) and the National Natural Science Foundation of China (21536008).

Abstract:

CO2 utilization has received worldwide attention. Effective utilization of CO2 becomes an urgent challenge. As such, developing catalysts and catalytic processes for effective CO2 conversion will contribute positively to reducing net CO2 emission. Recent developments of catalysts for CO2 hydrogenation to methanol, CO2 methanation and CO2 reforming of methane have been briefly reviewed. In particular, novel catalysts developed through computational catalysis and intensified catalyst preparation were presented. The importance of CO2 anion in CO2 reduction has been discussed. The plasma enhanced catalyst preparation was used as an example to demonstrate the importance of the multi-disciplinary efforts. Catalysts with optimized structures for heat transfer performance and distribution of active sites for CO2 conversion have also been discussed. Because of the complexity of global warming, some issues (for example the influence of change in the terrestrial magnetic field induced by human activity) are still not clear and call for more fundamental studies.

Key words: carbon dioxide, catalyst, hydrogenation, methanation, reforming

CLC Number: 

  • TQ21

[1] 孙洪志, 王倩, 宋名秀, 等. CO2化学利用的研究进展[J]. 化工进展, 2013, 32(7): 1666-1672. DOI: 10.3969/j.issn.1000-6613. 2013.07.036.
SUN H Z, WANG Q, SONG M X, et al. Progress in the chemical utilization of carbon dioxide [J]. Chemical Industry and Engineering Progress, 2013, 32(7): 1666-1672. DOI: 10.3969/j.issn.1000-6613. 2013.07.036.
[2] 高文桂, 王华, 韩冲, 等. MgO、CaO助剂对CO2加氢制备甲醇CuO-ZnO-Al2O3催化剂性能的影响 [J]. 化工进展, 2014, 33(11): 2963-2969. DOI: 10.3969/j.issn.1000-6613.2014.11.023.
GAO W G, WANG H,HAN C,et al. Effect of promoter MgO,CaO on the performance of CuO-ZnO-Al2O3 catalyst for methanol synthesis through CO2 hydrogenation [J]. Chemical Industry and Engineering Progress, 2014, 33(11): 2963-2969. DOI: 10.3969/j.issn. 1000-6613. 2014.11.023.
[3] CENTI G, PERATHONER S. Opportunities and prospects in the chemical recycling of carbon dioxide to fuels [J]. Catalysis Today, 2009, 148(3/4): 191-205. DOI: 10.1016/j.cattod.2009.07.075.
[4] 彭辉, 吴志红, 张建林, 等. 基于能带匹配理论设计CO2光催化还原催化剂的研究进展 [J]. 化工进展, 2014, 33(11): 3007-3012. DOI: 10.3969/j.issn.1000-6613.2014.11.029.
PENG H,WU Z H,ZHANG J L,et al. Progress in designing CO2 photocatalyst based on energy band match theory [J]. Chemical Industry and Engineering Progress, 2014, 33(11): 3007-3012. DOI: 10.3969/j.issn.1000-6613.2014.11.029.
[5] 熊卓, 赵永椿, 张军营, 等. Ti基CO2光催化还原及其影响因素研究进展 [J]. 化工进展,2013, 32(5): 1043-1052. DOI: 10.3969/j.issn. 1000-6613.2013.05.014.
XIONG Z,ZHAO Y C,ZHANG J Y,et al. Research progress in photocatalytic reduction of CO2 using titania-based catalysts [J]. Chemical Industry and Engineering Progress, 2013, 32(5): 1043-1052. DOI: 10.3969/j.issn.1000-6613.2013.05.014.
[6] LIU C J. Do we have a rapid solution for CO2 utilization? A perspective from China [J]. Greenhouse Gases: Science & Technology, 2012, 2(2): 75-76. DOI: 10.1002/ghg.1282.
[7] ARESTA M. Carbon Dioxide as Chemical Feedstock[M]. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2010.
[8] GOEPPERT A, CZAUN M, JONES J P, et al. Recycling of carbon dioxide to methanol and derived products-closing the loop [J]. Chemical Society Review, 2014, 43: 7995-8048. DOI: 10.1039/C4CS00122B.
[9] LIAO F L, HUANG Y Q, GE J W, et al. Morphology-dependent interactions of ZnO with Cu nanoparticles at the materials' interface in selective hydrogenation of CO2 to CH3OH [J]. Angewandte Chemie-International Edition, 2011, 50(9): 2162-2165. DOI: 10.1002/anie.201007108.
[10] 叶静云. 二氧化碳加氢In2O3系催化剂理论与实验研究[D].天津:天津大学,2013.
YE Jingyun. Theoretical and experimental studies of CO2 hydrogenation on the In2O3 based catalyst [D]. Tianjin: Tianjin University, 2013
[11] CHENG D J, NEGREIROS F R, APRA E, et al. Computational approaches to the chemical conversion of carbon dioxide [J]. ChemSusChem, 2013, 6(6): 944-965. DOI: 10.1002/cssc.201200872.
[12] 石磊, 张婉莹, 王玉鑫, 等.低温甲醇合成研究进展 [J]. 化工学报, 2015, 66(9): 3333-3340.
SHI L, ZHANG W Y, WANG Y X,et al. Research developments of low-temperature methanol synthesis [J]. CIESC Journal, 2015, 66(9): 3333-3340. DOI: 10.11949/j.issn.0438-1157.20150834.
[13] WANG W, WANG S P, MA X B, et al. Recent advances in catalytic hydrogenation of carbon dioxide [J]. Chemical Society Review, 2011, 40: 3703-3727. DOI: 10.1039/C1CS15008A.
[14] SAEIDI S, AMIN N A S, RAHIMPOUR M R. Hydrogenation of CO2 to value-added products—a review and potential future developments [J]. Journal of CO2 Utilization, 2014, 5: 66-81. DOI: 10.1016/j.jcou. 2013.12.005.
[15] LIU C J, YE J Y, JIANG J J, et al. Progresses in the preparation of coke resistant Ni-based catalyst for steam and CO2 reforming of methane [J]. ChemCatChem, 2011, 3(3): 529-541. DOI: 10.1002/cctc. 201000358.
[16] PAKHARE D, SPIVEY J. A review of dry (CO2) reforming of methane over noble metal catalysts [J]. Chemical Society Reviews, 2014, 43: 7813-7837. DOI: 10.1039/C3CS60395D.
[17] NOURELDIN M M B, ELBASHIR N O, GABRIEL K J, et al. A process integration approach to the assessment of CO2 fixation through dry reforming [J]. ACS Sustainable Chemistry & Engineering, 2015, 3(4): 625-636. DOI: 10.1021/sc5007736.
[18] WANG W, GONG J L. Methanation of carbon dioxide: an overview [J]. Frontiers of Chemical Science & Engineering, 2011, 5(1): 2-10. DOI: 10.1007/s11705-010-0528-3.
[19] AZIZ M A A, JALIL A A, TRIWAHYONO S, et al. CO2 methanation over heterogeneous catalysts: recent progress and future prospects [J]. Green Chemistry, 2015, 17: 2647-2663. DOI: 10.1039/C5GC00119F.
[20] Li Y W, Chan S H, Sun Q. Heterogeneous catalytic conversion of CO2: a comprehensive theoretical review [J]. Nanoscale, 2015, 7: 8663-8683. DOI: 10.1039/C5NR00092K.
[21] 何良年. 二氧化碳化学[M]. 北京: 科学出版社, 2013.
HE L N. Carbon Dioxide Chemistry[M]. Beijing: Science Press, 2013.
[22] HOCH L B, WOOD T E, O'BRIEN P G, et al. The rational design of a single-component photocatalyst for gas-phase CO2 reduction using both uv and visible light [J]. Advanced Science, 2014, 1(1): 1400013. DOI: 10.1002/advs.201400013.
[23] CHAKRABORTY A K, KEBEDE M A. Efficient decomposition of organic pollutants over In2O3/TiO2 nanocomposite photocatalyst under visible light irradiation [J]. Journal of Cluster Science, 2012, 23(2): 247-257. DOI: 10.1007/s10876-011-0425-z.
[24] YE J Y, LIU C J, GE Q F. DFT study of CO2 adsorption and hydrogenation on the In2O3 surface [J]. Journal of Physical Chemistry C, 2012, 116(14): 7817-7825. DOI: 10.1021/jp3004773.
[25] YE J Y, LIU C J, MEI D H, et al. Active oxygen vacancy site for methanol synthesis from CO2 hydrogenation on In2O3(110): a DFT study [J]. ACS Catalysis, 2013, 3(6): 1296-1306. DOI: 10.1021/cs400132a.
[26] SUN K H, FAN Z G, YE J Y, et al. Hydrogenation of CO2 to methanol over In2O3 Catalyst [J]. Journal of CO2 Utilization, 2015, 12: 1-6. DOI: 10.1016/j.jcou.2015.09.002.
[27] 郭秋婷. 二氧化碳加氢氧化铟催化剂实验研究[D]. 天津:天津大学,2015.GUO Qiuting. CO2 hydrogenation over In2O3[D]. Tianjin: Tianjin University, 2015.
[28] WANG J G, LIU C J, ZHANG Y P, et al. A DFT study of synthesis of acetic acid from methane and carbon dioxide [J]. Chemical Physics Letters, 2003, 368(3/4): 313-318. DOI: 10.1016/S0009-2614(02) 01866-3.
[29] ZOU J J, LIU C J. Utilization of Carbon Dioxide through Nonthermal Plasma Approaches//Carbon Dioxide as Chemical Feedstock[M]. Michele Aresta, ed. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2010: 267-290.
[30] LI K, LIU J L, LI X S, et al. Post-plasma catalytic oxidative CO2 reforming of methane over Ni-based catalysts [J]. Catalysis Today, 2015, 256: 96-101. DOI: 10.1016/j.cattod.2015.03.013.
[31] WANG Q, WU W, CHEN J F, et al. Novel synthesis of ZnPc/TiO2 composite particles and carbon dioxide photo-catalytic reduction efficiency study under simulated solar radiation conditions [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 409: 118-125. DOI: 10.1016/j.colsurfa.2012.06.010.
[32] CAI W J, PISCINA P R, TOYIR J, et al. CO2 hydrogenation to methanol over CuZnGa catalysts prepared using microwave-assisted methods [J]. Catalysis Today, 2015, 242: 193-199. DOI: 10.1016/j. cattod. 2014.06.012.
[33] QIN Z F, REN J, MIAO M Q, et al. The catalytic methanation of coke oven gas over Ni-Ce/Al2O3 catalysts prepared by microwave heating: effect of amorphous NiO formation [J]. Applied Catalysis B: Environmental, 2015, 164: 18-30. DOI:10.1016/j.apcatb.2014.08.047.
[34] XIE Z Z, ZHU M Q, NAMBO A, et al. Microwave-assisted synthesized SAPO-56 as a catalyst in the conversion of CO2 to cyclic carbonates [J]. Dalton Transaction, 2013, 42: 6732-6735. DOI: 10.1039/C3DT00064H.
[35] NOZAKI T, NEYTS E C, SANKARAN M, et al. Plasmas for enhanced catalytic processes (ISPCEM 2014) preface [J]. Catalysis Today, 2015, 256: 1-2.
[36] VISSOKOV G P, PANAYOTOVA M I. Plasma-chemical synthesis and regeneration of catalysts for reforming natural gas [J]. Catalysis Today,2002, 72(3/4):213-221. DOI:10.1016/S0920-5861(01)00495-3.
[37] LIU C J, VISSOKOV G P, Jang B. Catalyst preparation using plasma technologies [J]. Catalysis Today, 2002, 72(3/4): 173-184. DOI: 10.1016/S0920-5861(01)00491-6.
[38] IIJIMA S. Helical microtubules of graphitic carbon [J]. Nature, 1991, 354: 56-58. DOI: 10.1038/354056a0.
[39] LIU C J, ZHAO Y, LI Y Z, et al. Perspectives on electron assisted reduction for the preparation of highly dispersed noble metal catalysts [J]. ACS Sustainable Chemistry & Engineering, 2014, 2(1): 3-13. DOI: 10.1021/sc400376m.
[40] LIU C J, SHI P, JIANG J J, et al. Development of coke resistant Ni catalysts for CO2 reforming of methane via glow discharge plasma treatment [J]. ACS Symposium Series, 2010, 1056(11): 175-180. DOI: 10.1021/bk-2010-1056.ch011.
[41] GUO F, CHU W, XU H Y, et al. Glow discharge plasma-enhanced preparation of nickel-based catalyst for CO2 methanation [J]. Chinese Journal of Catalysis, 2007, 28(5): 429-434.
[42] ZHENG X G, TAN S Y, DONG L C, et al. Plasma-assisted catalytic dry reforming of methane: highly catalytic performance of nickel ferrite nanoparticles embedded in silica [J]. Journal of Power Sources, 2015, 274: 286-294. DOI: 10.1016/j.jpowsour.2014.10.065.
[43] YAN X L, ZHAO B R, LIU Y, et al. Dielectric barrier discharge plasma for preparation of Ni-based catalysts with enhanced coke resistance: current status and perspective [J]. Catalysis Today, 2015, 256: 29-40. DOI: 10.1016/j.cattod.2015.04.045.
[44] FAN Z G, SUN K H, RUI N, et al. Improved activity of Ni/MgAl2O4 for CO2 methanation by the plasma decomposition [J]. Journal of Energy Chemistry, 2015, 24(5): 655-659. DOI: 10.1016/j.jechem. 2015.09.004.
[45] LIU G H, CHU W, LONG H L, et al. A novel reduction method for Ni/gamma-Al2O3 catalyst by a high frequency cold plasma jet at atmospheric pressure [J]. Chinese Journal of Catalysis, 2007, 28(7): 582-584. DOI: 10.1016/S1872-2067(07)60048-5.
[46] PAN Y X, KUAI P Y, LIU Y, et al. Promotion effects of Ga2O3 on CO2 adsorption and conversion over a SiO2-supported Ni catalyst [J]. Energy Environmental Science, 2010, 3: 1322-1325. DOI: 10.1039/C0EE00149J.
[47] ZHOU Y, WANG Z Y, LIU C J. Perspective on CO oxidation over Pd-based catalysts [J]. Catalysis Science & Technology, 2015, 5: 69-81. DOI: 10.1039/C4CY00983E.
[48] YAN J M, PAN Y X, CHEETHAM A G, et al. One-step fabrication of self-assembled peptide thin films with highly dispersed noble metal nanoparticles [J]. Langmuir, 2013, 29(52): 16051-16057. DOI: 10.1021/la4036908.
[49] YE J Y, JOHNSON J K. Design of Lewis pair-functionalized metal organic frameworks for CO2 hydrogenation [J]. ACS Catalysis, 2015, 5(5): 2921-2928. DOI: 10.1021/acscatal.5b00396.
[50] YE J Y, JOHNSON J K. Screening Lewis pair moieties for catalytic hydrogenation of CO2 in functionalized UiO-66 [J]. ACS Catalysis, 2015, 5(10): 6219-6229. DOI: 10.1021/acscatal.5b01191.
[51] LIN S, DIERCKS C S, ZHANG Y B, et al. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water [J]. Science, 2015, 349(6253): 1208-1213. DOI: 10.1126/science.aac8343.
[52] GE Q F. Mechanistic Understanding of Catalytic CO2 Activation from First Principles Theory//In Activation of Carbon Dioxide, New and Future Developments in Catalysis [M]. Amsterdam: Elsevier, 2013: 49-79.
[53] GAO D F, ZHOU H, WANG J, et al. Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles [J]. Journal of the American Chemical Society, 2015, 137(13): 4288-4291. DOI: 10.1021/jacs. 5b00046.
[54] WEN S P, LIANG M L, ZOU J M, et al. Synthesis of a SiO2 nanofibre confined Ni catalyst by electrospinning for the CO2 reforming of methane [J]. Journal of Materials Chemistry A, 2015, 3: 13299-13307. DOI: 10.1039/C5TA01699A.

[1] LIU Zhongyan, SUN Dahan, JIN Xu, WANG Tianhao, MA Yitai. Evaluation research on boiling heat transfer model of CO2 in tube [J]. CIESC Journal, 2019, 70(1): 56-64.
[2] CHEN Chen, WANG Ying, LIU Hong, CHEN Yan, YAO Mingdong, XIAO Wenhai. Exploring the key structural properties affecting the function of multi-step phytoene dehydrogenase CrtI [J]. CIESC Journal, 2019, 70(1): 189-198.
[3] WANG Channa, LIU Ling, WANG Huihua, QU Tianpeng, TIAN Jun, WANG Deyong, KANG Zhenhui. Controllable preparation of Co-Fe-Pd nanoparticles and their catalytic activities toward oxygen reduction [J]. CIESC Journal, 2019, 70(1): 319-326.
[4] XIE Jing, XU Mingyi, BAN Shuai, SUN Hui, ZHOU Hongjun. Simulation analysis of multi-physics coupling SOFC fueled nature gas in the way of internal reforming and external reforming [J]. CIESC Journal, 2019, 70(1): 214-226.
[5] WANG Cailin, GU Shuaiwei, LI Yuxing, HU Qihui, TENG Lin, WANG Jinghan, MA Hongtao, ZHANG Datong. Experimental study on foaming characteristics of CO2-crude oil mixture [J]. CIESC Journal, 2019, 70(1): 251-260.
[6] LI Jingyan, LIU Zhongliang, ZHOU Yu, LI Yanxia. Study of thermal-hydrologic-mechanical numerical simulation model on CO2 plume geothermal system [J]. CIESC Journal, 2019, 70(1): 72-82.
[7] DU Dongxing, ZHENG Lichen, ZHANG Xu, SUN Guolong, LI Yingge, CHAO Kun. Comparative experimental studies on oil recovery characteristics of supercritical CO2 and foam fluid in porous media [J]. CIESC Journal, 2018, 69(S1): 58-63.
[8] WANG Feng, LIU Yanyun, CHEN Bohong, WANG Guoqiang. Methanol steam reforming for hydrogen production with waste heat recovery-effects of operation parameters [J]. CIESC Journal, 2018, 69(S1): 102-107.
[9] HE Kaiwu, TANG Siyang, LIU Changjun, YUE Hairong, LIANG Bin. Performance of amine functionalized mesoporous adsorbents for CO2 adsorption [J]. CIESC Journal, 2018, 69(9): 3887-3895.
[10] HAN Tianyi, YAO Yuan, XU Jun, QI Liqiang, LI Jintao, TENG Fei. Synergetic mechanism of hygroscopic agent, surfactant and catalyst on desulfurization of flue gas circulating fluidized bed [J]. CIESC Journal, 2018, 69(9): 4044-4050.
[11] WANG Jie, ZHANG Yin, GUO Jianjian, ZHAO Lili, ZHAO Yongxiang. γ-Valerolactone synthesis from levulinic acid hydrogenation over Ni/ZrO2-SiO2 catalyst [J]. CIESC Journal, 2018, 69(8): 3452-3459.
[12] SONG Rui, JIN Guangyuan, CUI Zhengwei, SONG Chunfang, CHEN Haiying. Dielectric properties of mixed materials in transesterification reaction system [J]. CIESC Journal, 2018, 69(8): 3670-3677.
[13] LI Guorong, ZOU Xiangda, WANG Qifan, WANG Xin, TANG Zhongzhi, ZHOU Yangjie, TANG Dian. Crystal structures, electronic structures and conductivity of Si highly doped RuO2 [J]. CIESC Journal, 2018, 69(8): 3717-3723.
[14] WANG Zongyu, KUANG Hailang, ZHANG Jifeng, JI Yulong. Removal of marine diesel engine exhaust pollutants with DOC+SCR technologies [J]. CIESC Journal, 2018, 69(7): 3249-3256.
[15] ZHANG Jie, LI Tao. Application of CFD to improve calculated process of methanation over plum-shaped catalyst [J]. CIESC Journal, 2018, 69(7): 2985-2992.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!