[1] 孙洪志, 王倩, 宋名秀, 等. CO2化学利用的研究进展[J]. 化工进展, 2013, 32(7): 1666-1672. DOI: 10.3969/j.issn.1000-6613. 2013.07.036.
SUN H Z, WANG Q, SONG M X, et al. Progress in the chemical utilization of carbon dioxide [J]. Chemical Industry and Engineering Progress, 2013, 32(7): 1666-1672. DOI: 10.3969/j.issn.1000-6613. 2013.07.036.
[2] 高文桂, 王华, 韩冲, 等. MgO、CaO助剂对CO2加氢制备甲醇CuO-ZnO-Al2O3催化剂性能的影响 [J]. 化工进展, 2014, 33(11): 2963-2969. DOI: 10.3969/j.issn.1000-6613.2014.11.023.
GAO W G, WANG H,HAN C,et al. Effect of promoter MgO,CaO on the performance of CuO-ZnO-Al2O3 catalyst for methanol synthesis through CO2 hydrogenation [J]. Chemical Industry and Engineering Progress, 2014, 33(11): 2963-2969. DOI: 10.3969/j.issn. 1000-6613. 2014.11.023.
[3] CENTI G, PERATHONER S. Opportunities and prospects in the chemical recycling of carbon dioxide to fuels [J]. Catalysis Today, 2009, 148(3/4): 191-205. DOI: 10.1016/j.cattod.2009.07.075.
[4] 彭辉, 吴志红, 张建林, 等. 基于能带匹配理论设计CO2光催化还原催化剂的研究进展 [J]. 化工进展, 2014, 33(11): 3007-3012. DOI: 10.3969/j.issn.1000-6613.2014.11.029.
PENG H,WU Z H,ZHANG J L,et al. Progress in designing CO2 photocatalyst based on energy band match theory [J]. Chemical Industry and Engineering Progress, 2014, 33(11): 3007-3012. DOI: 10.3969/j.issn.1000-6613.2014.11.029.
[5] 熊卓, 赵永椿, 张军营, 等. Ti基CO2光催化还原及其影响因素研究进展 [J]. 化工进展,2013, 32(5): 1043-1052. DOI: 10.3969/j.issn. 1000-6613.2013.05.014.
XIONG Z,ZHAO Y C,ZHANG J Y,et al. Research progress in photocatalytic reduction of CO2 using titania-based catalysts [J]. Chemical Industry and Engineering Progress, 2013, 32(5): 1043-1052. DOI: 10.3969/j.issn.1000-6613.2013.05.014.
[6] LIU C J. Do we have a rapid solution for CO2 utilization? A perspective from China [J]. Greenhouse Gases: Science & Technology, 2012, 2(2): 75-76. DOI: 10.1002/ghg.1282.
[7] ARESTA M. Carbon Dioxide as Chemical Feedstock[M]. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2010.
[8] GOEPPERT A, CZAUN M, JONES J P, et al. Recycling of carbon dioxide to methanol and derived products-closing the loop [J]. Chemical Society Review, 2014, 43: 7995-8048. DOI: 10.1039/C4CS00122B.
[9] LIAO F L, HUANG Y Q, GE J W, et al. Morphology-dependent interactions of ZnO with Cu nanoparticles at the materials' interface in selective hydrogenation of CO2 to CH3OH [J]. Angewandte Chemie-International Edition, 2011, 50(9): 2162-2165. DOI: 10.1002/anie.201007108.
[10] 叶静云. 二氧化碳加氢In2O3系催化剂理论与实验研究[D].天津:天津大学,2013.
YE Jingyun. Theoretical and experimental studies of CO2 hydrogenation on the In2O3 based catalyst [D]. Tianjin: Tianjin University, 2013
[11] CHENG D J, NEGREIROS F R, APRA E, et al. Computational approaches to the chemical conversion of carbon dioxide [J]. ChemSusChem, 2013, 6(6): 944-965. DOI: 10.1002/cssc.201200872.
[12] 石磊, 张婉莹, 王玉鑫, 等.低温甲醇合成研究进展 [J]. 化工学报, 2015, 66(9): 3333-3340.
SHI L, ZHANG W Y, WANG Y X,et al. Research developments of low-temperature methanol synthesis [J]. CIESC Journal, 2015, 66(9): 3333-3340. DOI: 10.11949/j.issn.0438-1157.20150834.
[13] WANG W, WANG S P, MA X B, et al. Recent advances in catalytic hydrogenation of carbon dioxide [J]. Chemical Society Review, 2011, 40: 3703-3727. DOI: 10.1039/C1CS15008A.
[14] SAEIDI S, AMIN N A S, RAHIMPOUR M R. Hydrogenation of CO2 to value-added products—a review and potential future developments [J]. Journal of CO2 Utilization, 2014, 5: 66-81. DOI: 10.1016/j.jcou. 2013.12.005.
[15] LIU C J, YE J Y, JIANG J J, et al. Progresses in the preparation of coke resistant Ni-based catalyst for steam and CO2 reforming of methane [J]. ChemCatChem, 2011, 3(3): 529-541. DOI: 10.1002/cctc. 201000358.
[16] PAKHARE D, SPIVEY J. A review of dry (CO2) reforming of methane over noble metal catalysts [J]. Chemical Society Reviews, 2014, 43: 7813-7837. DOI: 10.1039/C3CS60395D.
[17] NOURELDIN M M B, ELBASHIR N O, GABRIEL K J, et al. A process integration approach to the assessment of CO2 fixation through dry reforming [J]. ACS Sustainable Chemistry & Engineering, 2015, 3(4): 625-636. DOI: 10.1021/sc5007736.
[18] WANG W, GONG J L. Methanation of carbon dioxide: an overview [J]. Frontiers of Chemical Science & Engineering, 2011, 5(1): 2-10. DOI: 10.1007/s11705-010-0528-3.
[19] AZIZ M A A, JALIL A A, TRIWAHYONO S, et al. CO2 methanation over heterogeneous catalysts: recent progress and future prospects [J]. Green Chemistry, 2015, 17: 2647-2663. DOI: 10.1039/C5GC00119F.
[20] Li Y W, Chan S H, Sun Q. Heterogeneous catalytic conversion of CO2: a comprehensive theoretical review [J]. Nanoscale, 2015, 7: 8663-8683. DOI: 10.1039/C5NR00092K.
[21] 何良年. 二氧化碳化学[M]. 北京: 科学出版社, 2013.
HE L N. Carbon Dioxide Chemistry[M]. Beijing: Science Press, 2013.
[22] HOCH L B, WOOD T E, O'BRIEN P G, et al. The rational design of a single-component photocatalyst for gas-phase CO2 reduction using both uv and visible light [J]. Advanced Science, 2014, 1(1): 1400013. DOI: 10.1002/advs.201400013.
[23] CHAKRABORTY A K, KEBEDE M A. Efficient decomposition of organic pollutants over In2O3/TiO2 nanocomposite photocatalyst under visible light irradiation [J]. Journal of Cluster Science, 2012, 23(2): 247-257. DOI: 10.1007/s10876-011-0425-z.
[24] YE J Y, LIU C J, GE Q F. DFT study of CO2 adsorption and hydrogenation on the In2O3 surface [J]. Journal of Physical Chemistry C, 2012, 116(14): 7817-7825. DOI: 10.1021/jp3004773.
[25] YE J Y, LIU C J, MEI D H, et al. Active oxygen vacancy site for methanol synthesis from CO2 hydrogenation on In2O3(110): a DFT study [J]. ACS Catalysis, 2013, 3(6): 1296-1306. DOI: 10.1021/cs400132a.
[26] SUN K H, FAN Z G, YE J Y, et al. Hydrogenation of CO2 to methanol over In2O3 Catalyst [J]. Journal of CO2 Utilization, 2015, 12: 1-6. DOI: 10.1016/j.jcou.2015.09.002.
[27] 郭秋婷. 二氧化碳加氢氧化铟催化剂实验研究[D]. 天津:天津大学,2015.GUO Qiuting. CO2 hydrogenation over In2O3[D]. Tianjin: Tianjin University, 2015.
[28] WANG J G, LIU C J, ZHANG Y P, et al. A DFT study of synthesis of acetic acid from methane and carbon dioxide [J]. Chemical Physics Letters, 2003, 368(3/4): 313-318. DOI: 10.1016/S0009-2614(02) 01866-3.
[29] ZOU J J, LIU C J. Utilization of Carbon Dioxide through Nonthermal Plasma Approaches//Carbon Dioxide as Chemical Feedstock[M]. Michele Aresta, ed. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2010: 267-290.
[30] LI K, LIU J L, LI X S, et al. Post-plasma catalytic oxidative CO2 reforming of methane over Ni-based catalysts [J]. Catalysis Today, 2015, 256: 96-101. DOI: 10.1016/j.cattod.2015.03.013.
[31] WANG Q, WU W, CHEN J F, et al. Novel synthesis of ZnPc/TiO2 composite particles and carbon dioxide photo-catalytic reduction efficiency study under simulated solar radiation conditions [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 409: 118-125. DOI: 10.1016/j.colsurfa.2012.06.010.
[32] CAI W J, PISCINA P R, TOYIR J, et al. CO2 hydrogenation to methanol over CuZnGa catalysts prepared using microwave-assisted methods [J]. Catalysis Today, 2015, 242: 193-199. DOI: 10.1016/j. cattod. 2014.06.012.
[33] QIN Z F, REN J, MIAO M Q, et al. The catalytic methanation of coke oven gas over Ni-Ce/Al2O3 catalysts prepared by microwave heating: effect of amorphous NiO formation [J]. Applied Catalysis B: Environmental, 2015, 164: 18-30. DOI:10.1016/j.apcatb.2014.08.047.
[34] XIE Z Z, ZHU M Q, NAMBO A, et al. Microwave-assisted synthesized SAPO-56 as a catalyst in the conversion of CO2 to cyclic carbonates [J]. Dalton Transaction, 2013, 42: 6732-6735. DOI: 10.1039/C3DT00064H.
[35] NOZAKI T, NEYTS E C, SANKARAN M, et al. Plasmas for enhanced catalytic processes (ISPCEM 2014) preface [J]. Catalysis Today, 2015, 256: 1-2.
[36] VISSOKOV G P, PANAYOTOVA M I. Plasma-chemical synthesis and regeneration of catalysts for reforming natural gas [J]. Catalysis Today,2002, 72(3/4):213-221. DOI:10.1016/S0920-5861(01)00495-3.
[37] LIU C J, VISSOKOV G P, Jang B. Catalyst preparation using plasma technologies [J]. Catalysis Today, 2002, 72(3/4): 173-184. DOI: 10.1016/S0920-5861(01)00491-6.
[38] IIJIMA S. Helical microtubules of graphitic carbon [J]. Nature, 1991, 354: 56-58. DOI: 10.1038/354056a0.
[39] LIU C J, ZHAO Y, LI Y Z, et al. Perspectives on electron assisted reduction for the preparation of highly dispersed noble metal catalysts [J]. ACS Sustainable Chemistry & Engineering, 2014, 2(1): 3-13. DOI: 10.1021/sc400376m.
[40] LIU C J, SHI P, JIANG J J, et al. Development of coke resistant Ni catalysts for CO2 reforming of methane via glow discharge plasma treatment [J]. ACS Symposium Series, 2010, 1056(11): 175-180. DOI: 10.1021/bk-2010-1056.ch011.
[41] GUO F, CHU W, XU H Y, et al. Glow discharge plasma-enhanced preparation of nickel-based catalyst for CO2 methanation [J]. Chinese Journal of Catalysis, 2007, 28(5): 429-434.
[42] ZHENG X G, TAN S Y, DONG L C, et al. Plasma-assisted catalytic dry reforming of methane: highly catalytic performance of nickel ferrite nanoparticles embedded in silica [J]. Journal of Power Sources, 2015, 274: 286-294. DOI: 10.1016/j.jpowsour.2014.10.065.
[43] YAN X L, ZHAO B R, LIU Y, et al. Dielectric barrier discharge plasma for preparation of Ni-based catalysts with enhanced coke resistance: current status and perspective [J]. Catalysis Today, 2015, 256: 29-40. DOI: 10.1016/j.cattod.2015.04.045.
[44] FAN Z G, SUN K H, RUI N, et al. Improved activity of Ni/MgAl2O4 for CO2 methanation by the plasma decomposition [J]. Journal of Energy Chemistry, 2015, 24(5): 655-659. DOI: 10.1016/j.jechem. 2015.09.004.
[45] LIU G H, CHU W, LONG H L, et al. A novel reduction method for Ni/gamma-Al2O3 catalyst by a high frequency cold plasma jet at atmospheric pressure [J]. Chinese Journal of Catalysis, 2007, 28(7): 582-584. DOI: 10.1016/S1872-2067(07)60048-5.
[46] PAN Y X, KUAI P Y, LIU Y, et al. Promotion effects of Ga2O3 on CO2 adsorption and conversion over a SiO2-supported Ni catalyst [J]. Energy Environmental Science, 2010, 3: 1322-1325. DOI: 10.1039/C0EE00149J.
[47] ZHOU Y, WANG Z Y, LIU C J. Perspective on CO oxidation over Pd-based catalysts [J]. Catalysis Science & Technology, 2015, 5: 69-81. DOI: 10.1039/C4CY00983E.
[48] YAN J M, PAN Y X, CHEETHAM A G, et al. One-step fabrication of self-assembled peptide thin films with highly dispersed noble metal nanoparticles [J]. Langmuir, 2013, 29(52): 16051-16057. DOI: 10.1021/la4036908.
[49] YE J Y, JOHNSON J K. Design of Lewis pair-functionalized metal organic frameworks for CO2 hydrogenation [J]. ACS Catalysis, 2015, 5(5): 2921-2928. DOI: 10.1021/acscatal.5b00396.
[50] YE J Y, JOHNSON J K. Screening Lewis pair moieties for catalytic hydrogenation of CO2 in functionalized UiO-66 [J]. ACS Catalysis, 2015, 5(10): 6219-6229. DOI: 10.1021/acscatal.5b01191.
[51] LIN S, DIERCKS C S, ZHANG Y B, et al. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water [J]. Science, 2015, 349(6253): 1208-1213. DOI: 10.1126/science.aac8343.
[52] GE Q F. Mechanistic Understanding of Catalytic CO2 Activation from First Principles Theory//In Activation of Carbon Dioxide, New and Future Developments in Catalysis [M]. Amsterdam: Elsevier, 2013: 49-79.
[53] GAO D F, ZHOU H, WANG J, et al. Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles [J]. Journal of the American Chemical Society, 2015, 137(13): 4288-4291. DOI: 10.1021/jacs. 5b00046.
[54] WEN S P, LIANG M L, ZOU J M, et al. Synthesis of a SiO2 nanofibre confined Ni catalyst by electrospinning for the CO2 reforming of methane [J]. Journal of Materials Chemistry A, 2015, 3: 13299-13307. DOI: 10.1039/C5TA01699A. |