CIESC Journal ›› 2016, Vol. 67 ›› Issue (5): 1837-1843.DOI: 10.11949/j.issn.0438-1157.20151219

Previous Articles     Next Articles

Large eddy simulation of gas turbulent deflagration in small-scale confined space

WEN Xiaoping1, YU Minggao2, DENG Haoxin1, CHEN Junjie1, WANG Fahui1, LIU Zhichao1   

  1. 1 School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo 454003, Henan, China;
    2 School of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, Henan, China
  • Received:2015-07-29 Revised:2016-01-25 Online:2016-05-05 Published:2016-05-05
  • Supported by:

    supported by the National Natural Science Foundation of China (51176021).

小尺度受限空间内瓦斯湍流爆燃大涡模拟

温小萍1, 余明高2, 邓浩鑫1, 陈俊杰1, 王发辉1, 刘志超1   

  1. 1 河南理工大学机械与动力工程学院, 河南 焦作 454003;
    2 河南理工大学安全科学与工程学院, 河南 焦作 454003
  • 通讯作者: 温小萍
  • 基金资助:

    国家自然科学基金项目(51176021);河南省教育厅科学技术研究重点项目(14A410007)。

Abstract:

A 3D model of small-scale confined space with an inner size of 150 mm × 150 mm × 500 mm was set up. Based on the flame surface density model and the turbulent combustion model by Charlette et al., a large wddy simulation (LES) had been carried out on the process of gas deflagration flame-turbulence interaction with continuous obstacles at two sides of the chamber. All numerical results have been compared to experimental data. It showed that the LES is capable to predict the flame structure, position, speed, and overpressure in the process of gas deflagration, and the applicability of the LES and turbulent combustion model on gas deflagration was verified. In addition, the interaction between gas deflagration and turbulence and the relationship were described quantitatively by the Karlovitz number, and the transient flame regimes also identified. Under condition of continuous obstacles at double sides of the chamber, the gas turbulent deflagration flame experienced in the subsequent states of corrugated flamelets zone and thin reaction zone.

Key words: deflagration, turbulent flow, model, numerical simulation, overpressure, flame

摘要:

构建了150 mm × 150 mm × 500 mm小尺度受限空间三维模型,基于火焰表面密度模型和Charlette湍流燃烧模型,对两侧连续障碍物条件下瓦斯爆燃火焰与湍流耦合过程进行了大涡模拟(LES)。模拟结果均与实验结果进行了比较。结果表明:大涡模拟可以很好预测瓦斯爆燃过程中的火焰结构、火焰锋面位置、火焰传播速度及超压,验证了大涡模拟及湍流燃烧模型对于瓦斯爆燃的适用性。此外,通过Karlovitz数定量描述了瓦斯爆燃火焰与湍流之间的相互作用及其变化规律,并对不同时刻的火焰模态进行了判别,在两侧连续障碍物条件下瓦斯湍流爆燃火焰先后经历波纹小火焰和薄反应区两种模态。

关键词: 爆燃, 湍流, 模型, 数值模拟, 超压, 火焰

CLC Number: