CIESC Journal ›› 2016, Vol. 67 ›› Issue (1): 294-299.doi: 10.11949/j.issn.0438-1157.20150894

Previous Articles     Next Articles

Acetylene dimerization catalyzed by Nieuwland catalyst

ZHANG Yike1, JIA Zekun1, ZHEN Bin1,2, HAN Minghan1   

  1. 1 Department of Chemical Engineering, Tsinghua University, Beijing 100084, China;
    2 College of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
  • Received:2015-06-10 Revised:2015-07-16 Online:2016-01-05 Published:2015-10-14

Abstract:

Acetylene dimerization catalyzed by Nieuwland catalyst for the production of monovinylacetylene (MVA) is the crucial step for the manufacture of chloroprene from acetylene. The influence of the additives, DL-alanine content, acetylene gas hourly space velocity and internal diameter of the gas distributor on the reaction process were investigated. In addition, a continuous two-stage dimerization reaction was carried out. The result showed that DL-alanine would induce lower acetylene conversion and higher MVA selectivity. Higher acetylene gas hourly space velocity would cause shorter apparent residence time and strong back-mixing, which led to lower acetylene conversion and MVA selectivity. Small internal diameter of gas distributor favored the enhancement of mass transference through gas-liquid interface and the attenuation of back-mixing, which induced both high acetylene conversion and high MVA selectivity. In a continuous two-stage reaction process, both acetylene conversion and MVA selectivity kept in a high level. When the gas hourly space velocity of acetylene was 100 h-1, the acetylene conversion and MVA selectivity were 32.5% and 95.3%, respectively.

Key words: Nieuwland catalyst, acetylene dimerization, catalysis, monovinylacetylene, bubble column reactor, reaction engineering

CLC Number: 

  • TQ032

[1] 刘建国, 韩明汉, 左宜赞, 等. 乙炔二聚反应制备乙烯基乙炔研究进展 [J]. 化工进展, 2011, 30 (5): 942-947. DOI: 10.16085/j.issn.1000-6613.2011.05.015.LIU J G, HAN M H, ZUO Y Z, et al. Research progress of dimerization of acetylene to monovinylacetylene [J]. Chemical Industry and Engineering Progress, 2011, 30 (5): 942-947. DOI: 10.16085/j.issn.1000-6613.2011.05.015.
[2] LYNCH M. Manufacture and use of chloroprene monomer [J]. Chemico-Biological Interactions, 2001, 135 (SI): 155-167. DOI: 10.1016/S0009-2797(01)00188-0.
[3] TACHIYAMA T, YOSHIDA M, AOYAGIA T, et al. Mechanistic study on dimerization of acetylene with a Nieuwland catalyst [J]. Applied Organometallic Chemistry, 2008, 22 (4): 205-210. DOI: 10.1002/aoc.1365.
[4] TROTUS I T, ZIMMERMANN T, SCHÜTH F. Catalytic reactions of acetylene: a feedstock for the chemical industry revisited [J]. Chemical Reviews, 2014, 114 (3): 1761-1782. DOI: 10.1021/cr400357r.
[5] MYKHALICHKO B M, TEMKIN O N, MYS'KIV M G. Polynuclear complexes of copper (Ⅰ) halides: coordination chemistry and catalytic transformations of alkynes [J]. Russian Chemical Reviews, 2000, 69 (11): 957-984.
[6] 邓国才, 王正平, 刘光大, 等. 乙炔二聚反应非水催化剂的研究 [J]. 合成橡胶工业, 1991, 14 (2): 106-108.DENG G C, WANG Z P, LIU G D, et al. Non-aqueous catalyst for dimerization of acetylene [J]. China Synthetic Rubber Industry, 1991, 14 (2): 106-108.
[7] LIU J G, HAN M H, WANG Z W. Effect of solvent on catalytic performance of anhydrous catalyst in acetylene dimerization to monovinylacetylene [J]. Journal of Energy Chemistry, 2013, 22 (4): 599-604.
[8] 卢俊龙, 刘海月, 谢建伟, 等. 锌(Ⅱ)-铜(Ⅰ)双金属协同催化乙炔二聚反应的催化活性研究 [J]. 石河子大学学报 (自然科学版), 2014, 32 (2): 213-217.
LU J L, LIU H Y, XIE J W, et al. Study on catalytic activity of zinc(Ⅱ)-copper(Ⅰ) collaborative bimetallic catalysis in acetylene dimerization reaction [J]. Journal of Shihezi University (Natural Science), 2014, 32 (2): 213-217.
[9] 余亚玲. 乙炔二聚制备乙烯基乙炔的优化研究 [D]. 重庆: 重庆大学, 2013.
YU Y L. Study on optimization of acetylene dimerization for preparation of monovinylacetylene [D]. Chongqing: Chongqing University, 2013.
[10] 刘作华, 余亚玲, 杜军, 等. LaCl3改性Nieuwland催化剂催化乙炔二聚反应 [J]. 化工学报, 2014, 65 (4): 1260-1266.LIU Z H, YU Y L, DU J, et al. Acetylene dimerization catalyzed by LaCl3-modified Nieuwland catalyst [J]. CIESC Journal, 2014, 65 (4): 1260-1266.
[11] 陈荣悌, 邓国才, 穆瑞才, 等. 取代乙酸配体对乙炔二聚反应催化剂性能的影响 [J]. 无机化学学报, 1995, 11 (1): 89-92.
CHEN R T, DENG G C, MU R C, et al. Effect of substituted acetic acid ligand on the performance of acetylene dimerization catalyst [J]. Journal of Organic Chemistry, 1995, 11 (1): 89-92.
[12] YOSHIKAI N, NAKAMURA E. Mechanisms of nucleophilic organocopper (Ⅰ): Reactions [J]. Chemical Reviews, 2012, 112 (4): 2339-2372. DOI: 10.1021/cr200241f.
[13] GSCHWIND R M. Organocuprates and diamagnetic copper complexes: structures and NMR spectroscopic structure elucidation in solution [J]. Chemical Reviews, 2008, 108 (8): 3029-3053. DOI: 10.1021/cr800286r.
[14] NAKAMURA E, MORI S. Wherefore art thou copper? Structures and reaction mechanisms of organocuprate clusters in organic chemistry [J]. Angewandte Chemie-International Edition, 2000, 39 (21): 3750-3771. DOI: 10.1002/1521-3773(20001103)39:21<3750::AID-ANIE3750>3.0.CO;2-L
[15] TACHIYAMA T, YOSHIDA M, AOYAGIA T, et al. Deuteration and dimerization of acetylene with a Nieuwland catalyst in deuterium oxide [J]. Chemistry Letters, 2008, 37 (1): 38-39. DOI: 10.1246/cl.2008.38.
[16] TACHIYAMA T, YOSHIDA M, AOYAGIA T, et al. Deuterium kinetic isotope effects and H/D exchange in dimerization of acetylene with a Nieuwland catalyst in aqueous media [J]. Journal of Physical Organic Chemistry, 2008, 21 (6): 510-515. DOI: 10.1002/poc.1373.
[17] 黄伟传, 詹锋, 朱继明, 等. 乙炔二聚反应鼓泡塔冷模试验 [J]. 合成橡胶工业, 1994, 17 (2): 105-106.
HUANG W C, ZHAN F, ZHU J M, et al. Cold moulding test of bubble tower in acetylene dimerization [J]. China Synthetic Rubber Industry, 1994, 17 (2): 105-106.
[18] LIU J G, ZUO Y Z, HAN M H, et al. Improvement of anhydrous catalyst stability in acetylene dimerization by regulating acidity [J]. Journal of Chemical Technology and Biotechnology, 2013, 88 (3): 408-414. DOI: 10.1002/jctb.3860.
[19] 练以诚, 秦岭, 杨索和, 等. 多级鼓泡塔中液相返混系数与交换速度的研究 [J]. 化学工程, 2011, 29 (7): 43-46.
LIAN Y C, QIN L, YANG S H, et al. Liquid-phase backmixing coefficient and interchange velocity in multi-stage bubble column [J]. Chemical Engineering (China), 2011, 29 (7): 43-46.
[20] 叶泽月, 张丽娟, 石康生, 等. 分布器对鼓泡塔中气泡直径分布的影响 [J]. 化工生产与技术, 2007, 14 (4): 43-47.
YE Z Y, ZHANG L J, SHI K S, et al. Effect of gas distributor on bubble size profiles in a bubble column [J]. Chemical Production and Technology, 2007, 14 (4): 43-47.
[21] 于伟, 王铁峰, 汪展文. 两级气液内环流反应器内气含率和循环液速 [J]. 化工学报, 2008, 59 (5): 1107-1113.
YU W, WANG T F, WANG Z W. Gas holdup and liquid circulation velocity in gas-liquid two-stage internal-loop airlift reactor [J]. Journal of Chemical Industry and Engineering (China), 2008, 59 (5): 1107-1113.
[22] 莫之光, 梁应昌, 李遴榷, 等. 鼓泡塔反应器分布板的开孔率和液体返混 [J]. 化工学报, 1979, (2): 185-194.
MO Z G, LIANG Y C, LI L Q, et al. The openning fraction of gas distributor and back-mixing of liquid in gas bubble column [J]. Journal of Chemical Industry and Engineering (China), 1979, (2): 185-194.

[1] ZHU Yi, WANG Hao, CHEN Liping, GUO Zichao, HE Zhongqi, CHEN Wanghua. Calculate time to maximum rate under adiabatic condition by numerical calculation method [J]. CIESC Journal, 2019, 70(1): 379-387.
[2] CHEN Chen, WANG Ying, LIU Hong, CHEN Yan, YAO Mingdong, XIAO Wenhai. Exploring the key structural properties affecting the function of multi-step phytoene dehydrogenase CrtI [J]. CIESC Journal, 2019, 70(1): 189-198.
[3] CHEN Xiuying, XIE Huilin, HU Wenbin, ZHOU Xinhua, ZHOU Hongjun, SHU Xugang. Preparation and characterization of MCM-41 supported Pt-Al catalysts [J]. CIESC Journal, 2018, 69(S1): 72-79.
[4] YANG Shujun, WEI Yucong, WOO Meng Wai, WU Winston Duo, CHEN Xiao Dong, Xiao Jie. Numerical simulation of mono-disperse droplet spray dryer under influence of swirling flow [J]. CIESC Journal, 2018, 69(9): 3814-3824.
[5] GENG Lili, YANG Kaixu, ZHANG Nuowei, CHEN Binghui. Synergetic effect of Ru and Cu on catalytic wet oxidation of ammonia-wastewater [J]. CIESC Journal, 2018, 69(9): 3869-3878.
[6] NIE Shidong, LI Jiangtao, ZHANG Zhiying, LIU Yun, LIU Chunyan. Synthesis and properties of hierarchical structure silver micro-nanocrystals [J]. CIESC Journal, 2018, 69(9): 4090-4096.
[7] LI Han, PU Wenhao, YANG Ning, MAO Yanqin, YUE Chen, ZHANG Qi. Experimental study on air-paraffin direct contact heat transfer characteristics [J]. CIESC Journal, 2018, 69(9): 3792-3798.
[8] CUI Jiandong, CUI Zhaohui, SU Zhiguo, ZHENG Chunyang, MA Guanghui, ZHANG Songping. Bioactive coating prepared by bio-3D printing of castor oil-based waterborne polyurethane mixed with carbonic anhydrase [J]. CIESC Journal, 2018, 69(8): 3577-3584.
[9] YIN Yue, YUAN Linjiang, NIU Yuwei. Relationship between liquid change in dual chambers and performance of electricity production in DCMFC [J]. CIESC Journal, 2018, 69(8): 3605-3610.
[10] HUANG Pan, LIU Zhen, SHAO Yunqi, DENG Shifeng, LIU Boping. Influences of organic additives on inhibiting by-products in zinc-catalyzed synthesis of alkynylsilane [J]. CIESC Journal, 2018, 69(7): 2993-3000.
[11] ZHANG Liang, LIU Xiaochen, LIU Guiyan, LÜ Bo, FENG Xudong, LI Chun. Energy drive and regeneration in biotransformation [J]. CIESC Journal, 2018, 69(7): 2807-2814.
[12] YUE Dongmin, ZHANG Qianzhi, SUN De, LI Bingbing, MAO Qinye, PENG Congkang. Preparation and properties of PVA/SO42--AAO catalytic-pervaporation difunctional membrane for ethyl acetate synthesis [J]. CIESC Journal, 2018, 69(6): 2775-2781.
[13] TANG Cunduo, SHI Hongling, HE Zihan, DING Pengju, JIAO Zhujin, KAN Yunchao, YAO Lunguang. Green biosynthesis of phenylglyoxylic acid by biotransformation using recombinant Escherichia coli whole cells [J]. CIESC Journal, 2018, 69(6): 2627-2631.
[14] LI Haitao, NIU Zhuzhu, YANG Guofeng, ZHANG Hongxi, WANG Zhipeng, ZHAO Yongxiang. Effect of Cu2O/TiO2 catalyst support in formaldehyde ethynylation [J]. CIESC Journal, 2018, 69(6): 2512-2518.
[15] YIN Andong, DENG Wenyi, MA Jingchen, SU Yaxin. Properties on NO removal over pyrolyzed sludge carbon [J]. CIESC Journal, 2018, 69(6): 2655-2663.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!