CIESC Journal ›› 2015, Vol. 66 ›› Issue (9): 3476-3482.doi: 10.11949/j.issn.0438-1157.20150861

Previous Articles     Next Articles

Poisoning effect of H2S on catalytic performance of AuCl3/AC in acetylene hydrochlorination

DAI Bin, ZHANG Chunli, KANG Lihua, ZHU Mingyuan   

  1. School of Chemistry and Chemical Engineering of Shihezi University, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi 832003, Xinjiang, China
  • Received:2015-06-09 Revised:2015-07-06 Online:2015-09-05
  • Supported by:

    supported by the National Natural Science Foundation of China (21366027).


A study about poisoning effect of hydrogen sulfide (H2S) on the catalytic performance of AuCl3/AC during acetylene hydrochlorination deactivation is described and discussed. 1% AuCl3/AC catalyst is prepared by an incipient wetness impregnation technique. The activity tests demonstrate that H2S poisoning results in the rapid and irreversible deactivation of AuCl3/AC catalyst in acetylene hydrochlorination. Temperature-programmed reduction (TPR) and X-ray photoelectron spectra (XPS) show that H2S addition can effectively accelerate active Au3+ reduction to metallic Au0. The formation of metal sulfide may also be another reason for catalyst deactivation in the presence of H2S, which is supported by transmission electron microscopy (TEM) and energy dispersion X-ray spectrometer (EDX) techniques. In other words, with the increase of H2S added to the feed gases, the content of Au3+ is greatly reduced to metallic Au0. Moreover, the active sites are covered with Au-S compound. Both of them could reduce the effective active component, leading to the deactivation of the AuCl3/AC catalyst.

Key words: H2S, AuCl3/AC, catalysis, deactivation mechanism, acetylene hydrochlorination

CLC Number: 

  • TQ028.8

[1] Trotu? I T, Zimmermann T, Schüth F. Catalytic reactions of acetylene: a feedstock for the chemical industry revisited [J]. Chem. Rev., 2013, 114(3): 1761-1782.
[2] Steinborn D. Fundamentals of organometallic catalysis[M]. New York:John Wiley & Sons, 2011.
[3] Chen Y, Xie C, Li Y, Song C, Bolin T B. Sulfur poisoning mechanism of steam reforming catalysts: an X-ray absorption near edge structure (XANES) spectroscopic study [J]. Phys. Chem. Chem. Phys., 2010, 12(21): 5707-5711.
[4] Adesina A A. Hydrocarbon synthesis via Fischer-Tropsch reaction: travails and triumphs [J]. Appl. Catal. A: General, 1996, 138(2): 345-367.
[5] Wood B J, Isakson W E, Wise H. Kinetic studies of catalyst poisoning during methanol synthesis at high pressures [J]. Ind. Eng. Chem. Prod. Res. Dev., 1980, 19(2): 197-204.
[6] Fitzharris W D, Katzer J R, Manogue W H. Sulfur deactivation of nickel methanation catalysts [J]. J. Catal., 1982, 76(2): 369-384.
[7] Rodriguez J A, Dvorak J, Jirsak T, Li S Y, Hrbek J, Capitano A T, Gland J L. Chemistry of thiophene, pyridine, and cyclohexylamine on Ni/MoSx and Ni/S/Mo (110) surfaces: role of nickel in hydrodesulfurization and hydrodenitrogenation processes [J]. J. Phys. Chem. B., 1999, 103(39): 8310-8318.
[8] Chattanathan S A, Adhikari S, McVey M, Fasina O. Hydrogen production from biogas reforming and the effect of H2S on CH4 conversion [J]. Int. J. Hydrogen Energy, 2014, 39(35): 19905-19911.
[9] Beale A M, Gibson E K, O'Brien M G, Jacques S D, Cernik R J, di Michiel M, Weckhuysen B M. Chemical imaging of the sulfur-induced deactivation of Cu/ZnO catalyst bodies [J]. J. Catal., 2014, 314: 94-100.
[10] Appari S, Janardhanan V M, Bauri R, Jayanti S, Deutschmann O. A detailed kinetic model for biogas steam reforming on Ni and catalyst deactivation due to sulfur poisoning [J]. Appl. Catal. A: General, 2014, 471: 118-125.
[11] Prasad B, Janardhanan V M. Modeling sulfur poisoning of Ni-based anodes in solid oxide fuel cells [J]. J. Electrochem. Soc., 2014, 161(3): F208-F213.
[12] Sparks D E, Jacobs G, Gnanamani M K, Pendyala V R R. Poisoning of cobalt catalyst used for Fischer-Tropsch synthesis [J]. Catal. Today, 2013, 215: 67-72.
[13] Lakhapatri S L, Abraham M A. Sulfur poisoning of Rh-Ni catalysts during steam reforming of sulfur-containing liquid fuels [J]. Catal. Sci. Technol., 2013, 3(10): 2755-2760.
[14] Bartholomew C H. Mechanisms of catalyst deactivation [J]. Appl. Catal. A: General, 2001, 212(1): 17-60.
[15] Yan X, Liu Y, Zhao B, Wang Y, Liu C J. Enhanced sulfur resistance of Ni/SiO2 catalyst for methanation via the plasma decomposition of nickel precursor [J]. Phys. Chem. Chem. Phys., 2013, 15(29): 12132-12138.
[16] Bartholomew C H, Agrawal P K, Katzer J R. Sulfur poisoning of metals [J]. Adv. Catal., 1982, 31: 135-242.
[17] Zhang J, Liu N, Li W, Dai B. Progress on cleaner production of vinyl chloride monomers over non-mercury catalysts [J]. Front. Chem. Sci. Eng., 2011, 5(4): 514-520.
[18] Nkosi B, Coville N J, Hutchings G J. Reactivation of a supported gold catalyst for acetylene hydrochlorination [J]. J. Chem. Soc., Chem. Commun., 1988, (1): 71-72.
[19] Hutchings G J. Vapor phase hydrochlorination of acetylene: correlation of catalytic activity of supported metal chloride catalysts [J]. J. Catal., 1985, 96(1): 292-295.
[20] Conte M, Carley A F, Attard G, Herzing A A, Kiely C J, Hutchings G J. Hydrochlorination of acetylene using supported bimetallic Au-based catalysts [J]. J. Catal., 2008, 257(1): 190-198.
[21] Huang C, Zhu M, Kang L, Li X, Dai B. Active carbon supported TiO2-AuCl3/AC catalyst with excellent stability for acetylene hydrochlorination reaction [J]. Chem. Eng. J., 2014, 242: 69-75.
[22] Chen Y W, Chen H J, Lee D S. Au/Co3O4-TiO2 catalysts for preferential oxidation of CO in H2 stream [J]. J. Mole. Catal. A: Chemical, 2012, 363: 470-480.
[23] Dai B, Wang Q, Yu F, Zhu M. Effect of Au nano-particle aggregation on the deactivation of the AuCl3/AC catalyst for acetylene hydrochlorination [J]. Scientific Reports, 2014, 5: 10553-10553.
[24] Liu X, Liu M H, Luo Y C, Mou C Y, Lin S D, Cheng H, Lin T S. Strong metal-support interactions between gold nanoparticles and ZnO nanorods in CO oxidation [J]. J. Am. Chem. Soc., 2012, 134(24): 10251-10258.
[25] Li X, Zhu M, Dai B. AuCl3 on polypyrrole-modified carbon nanotubes as acetylene hydrochlorination catalysts [J]. Appl. Catal. B: Environmental, 2013, 142: 234-240.
[26] Mikhlin Y, Likhatski M, Karacharov A, Zaikovski V, Krylov A. Formation of gold and gold sulfide nanoparticles and mesoscale intermediate structures in the reactions of aqueous HAuCl4 with sulfide and citrate ions [J]. Phys. Chem. Chem. Phys., 2009, 11(26): 5445-5454.
[27] Baatz C, Decker N, Prüβe U. New innovative gold catalysts prepared by an improved incipient wetness method [J]. J. Catal., 2008, 258(1): 165-169.

[1] ZHU Yi, WANG Hao, CHEN Liping, GUO Zichao, HE Zhongqi, CHEN Wanghua. Calculate time to maximum rate under adiabatic condition by numerical calculation method [J]. CIESC Journal, 2019, 70(1): 379-387.
[2] CHEN Chen, WANG Ying, LIU Hong, CHEN Yan, YAO Mingdong, XIAO Wenhai. Exploring the key structural properties affecting the function of multi-step phytoene dehydrogenase CrtI [J]. CIESC Journal, 2019, 70(1): 189-198.
[3] CHEN Xiuying, XIE Huilin, HU Wenbin, ZHOU Xinhua, ZHOU Hongjun, SHU Xugang. Preparation and characterization of MCM-41 supported Pt-Al catalysts [J]. CIESC Journal, 2018, 69(S1): 72-79.
[4] GENG Lili, YANG Kaixu, ZHANG Nuowei, CHEN Binghui. Synergetic effect of Ru and Cu on catalytic wet oxidation of ammonia-wastewater [J]. CIESC Journal, 2018, 69(9): 3869-3878.
[5] NIE Shidong, LI Jiangtao, ZHANG Zhiying, LIU Yun, LIU Chunyan. Synthesis and properties of hierarchical structure silver micro-nanocrystals [J]. CIESC Journal, 2018, 69(9): 4090-4096.
[6] CUI Jiandong, CUI Zhaohui, SU Zhiguo, ZHENG Chunyang, MA Guanghui, ZHANG Songping. Bioactive coating prepared by bio-3D printing of castor oil-based waterborne polyurethane mixed with carbonic anhydrase [J]. CIESC Journal, 2018, 69(8): 3577-3584.
[7] YIN Yue, YUAN Linjiang, NIU Yuwei. Relationship between liquid change in dual chambers and performance of electricity production in DCMFC [J]. CIESC Journal, 2018, 69(8): 3605-3610.
[8] HUANG Pan, LIU Zhen, SHAO Yunqi, DENG Shifeng, LIU Boping. Influences of organic additives on inhibiting by-products in zinc-catalyzed synthesis of alkynylsilane [J]. CIESC Journal, 2018, 69(7): 2993-3000.
[9] ZHANG Liang, LIU Xiaochen, LIU Guiyan, LÜ Bo, FENG Xudong, LI Chun. Energy drive and regeneration in biotransformation [J]. CIESC Journal, 2018, 69(7): 2807-2814.
[10] YUE Dongmin, ZHANG Qianzhi, SUN De, LI Bingbing, MAO Qinye, PENG Congkang. Preparation and properties of PVA/SO42--AAO catalytic-pervaporation difunctional membrane for ethyl acetate synthesis [J]. CIESC Journal, 2018, 69(6): 2775-2781.
[11] TANG Cunduo, SHI Hongling, HE Zihan, DING Pengju, JIAO Zhujin, KAN Yunchao, YAO Lunguang. Green biosynthesis of phenylglyoxylic acid by biotransformation using recombinant Escherichia coli whole cells [J]. CIESC Journal, 2018, 69(6): 2627-2631.
[12] LI Haitao, NIU Zhuzhu, YANG Guofeng, ZHANG Hongxi, WANG Zhipeng, ZHAO Yongxiang. Effect of Cu2O/TiO2 catalyst support in formaldehyde ethynylation [J]. CIESC Journal, 2018, 69(6): 2512-2518.
[13] YIN Andong, DENG Wenyi, MA Jingchen, SU Yaxin. Properties on NO removal over pyrolyzed sludge carbon [J]. CIESC Journal, 2018, 69(6): 2655-2663.
[14] ZHEN Wenyuan, LI Qing. Preparation of TiO2/attapulgite composite photocatalyst by supercritical fluid drying method [J]. CIESC Journal, 2018, 69(5): 2290-2298.
[15] CHEN Ying, HAN Xingyue, LIANG Hongbao, LIANG Yuning, GAO Yanhua. Synthesis and photocatalytic activity of RGO-BiOCl/Bi2WO6 heterojunction photocatalyst by microwave etching method [J]. CIESC Journal, 2018, 69(4): 1758-1764.
Full text



No Suggested Reading articles found!