CIESC Journal ›› 2020, Vol. 71 ›› Issue (10): 4773-4782.doi: 10.11949/0438-1157.20200879

• Biochemical engineering and technology • Previous Articles     Next Articles

Treatment of biomass tar by CO2 plasma

Ming ZHANG(),Lehao LI,Rulong LI,Jianhua WU,Baogen SU,Guangdong WEN(),Qiwei YANG,Qilong REN   

  1. Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China
  • Received:2020-07-03 Revised:2020-09-01 Online:2020-10-05 Published:2020-09-10
  • Contact: Guangdong WEN E-mail:phoenix0227@zju.edu.cn;zdwgd@zju.edu.cn

Abstract:

The tar produced in the process of biomass gasification would not only corrode the pipelines and equipment, but also reduce the efficiency of biomass gasification. Traditional methods, such as physical treatment and thermal cracking, have deficiencies which severely restrict their application. This article achieved efficient transformation (carbon yield >90%) from benzene and naphthalene, regarded as model compounds of biomass tar, to syngas using CO2 plasma on self-designed rotating arc plasma torch, proving the feasibility of CO2 plasma treatment of biomass tar. Further analysis on the composition of practical biomass tar and the investigation of biomass tar gasification were carried out. Water content in biomass tar could be used as gasification agent and control the H2/CO scale (0.3—1). The above results provide new ideas for the development of biomass tar harmlessness and resource utilization technology.

Key words: rotating arc plasma, biomass tar, gasification, carbon dioxide, syngas

CLC Number: 

  • TQ 039+.3

Fig.1

Operation system of 50 kW plasma torch"

Table 1

GC analyzing results of product gas"

H2COCO2CH4C2H2∑CxHy(x≥3)
15%~45%50%~80%0~10%<0.01%<0.01%<0.01%

Table 2

Effects of CO2 flow rate on benzene gasification"

QCO2/(m3/h)Concentration/%Q/(m3/h)

SEC/

(kW·h/m3)

H2/COX/%
H2COCO2COH2
0.6031.168.900.840.3811.00.4551.8
0.6930.369.701.040.458.940.4460.9
0.7828.271.801.230.487.760.3968.6
0.9622.977.101.730.515.960.3087.3
1.1419.579.60.911.780.446.020.2483.6
1.2318.380.21.501.660.386.530.2375.1

Fig.2

Effects of CO2 flow rate on gas composition"

Fig.3

Effects of CO2 flow rate on SEC and X"

Table 3

Effects of input power on benzene gasification"

Input power/

kW

Concentration/%Q/(m3/h)

SEC/

(kW·h/m3)

H2/COX/%
H2COCO2COH2
10.3118.880.30.951.270.306.590.2365.1
11.8620.578.41.111.560.416.040.2680.1
12.9619.979.30.841.810.455.730.2592.8
14.6919.779.40.941.700.426.940.2589.1
16.1020.079.20.861.660.427.740.2585.3
17.6021.078.60.411.540.419.020.2778.5

Fig.4

Effects of input power on gas composition"

Fig.5

Effects of input power on SEC and X"

Fig.6

X for the gasification of benzene-naphthalene mixtures with different naphthalene mass fractions"

Fig.7

SEC for the gasification of benzene-naphthalene mixtures with different naphthalene mass fraction"

Fig.8

FTIR spectra of biomass tar"

Table 4

Identifiable component analysis of biomass tar by GC/MS"

No.Retention time/minRetention time ST/minCompoundMolecular formulaMole fraction/%
12.3362.334苯并呋喃C8H6O2.10
23.4513.448C10H831.52
34.0594.0652-甲基萘C11H106.23
44.1424.1681-甲基萘C11H104.24
54.4594.445联苯C12H101.11
64.7134.6972-乙烯基萘C12H100.98
74.8104.808苊烯C12H88.26
85.0965.073苯并呋喃C12H8O0.63
95.3425.332C13H103.92
106.0286.016C14H104.62
116.0796.052C14H101.80
127.1487.139C16H101.92

Fig.9

GC/MS total ion chromatogram of biomass tar"

Table 5

Effects of CO2 flow rate on the gasification of the mixture of biomass tar and benzene"

QCO2/(m3/h)Concentration/%Q/(m3/h)

SEC/

(kW·h/m3)

H2/CO
H2COCO2COH2
0.4330.869.200.670.3014.10.44
0.5130.269.800.870.3810.90.43
0.6026.072.81.261.020.369.830.36
0.6924.770.54.811.100.399.130.35
0.8620.674.35.051.210.348.800.28
0.9517.873.98.341.190.299.220.24

Fig.10

Effects of CO2 flow rate on the gasification of the mixture of biomass tar and benzene"

Table 6

Comparison of optimal gasification results among mixtures with different water contents"

含水率/%QCO2/(m3/h)Concentration/%

SEC/

(kW·h/m3)

H2/CO
H2COCO2
13.30.6924.770.54.819.130.35
27.10.4337.361.90.818.880.60
46.00.4342.853.73.589.110.80

Fig.11

CO and H2 concentration in product gas for the gasification of mixtures with different water contents"

1 王久臣, 戴林, 田宜水, 等. 中国生物质能产业发展现状及趋势分析[J]. 农业工程学报, 2007, 23(9): 276-282.
Wang J C, Dai L, Tian Y S, et al. Analysis of the development status and trends of biomass energy industry in China [J]. Transactions of the CSAE, 2007, 23(9): 276-282.
2 李景明, 薛梅. 中国生物质能利用现状与发展前景[J]. 农业科技管理, 2010, 29(2): 1-4.
Li J M, Xue M. Current status and development prospects of biomass energy utilization in China [J]. Management of Agricultural Science and Technology Energy, 2010, 29(2): 1-4.
3 许小骏. 林业生物质能源发展现状及展望[J]. 山西农业科学, 2008, 36(8): 88-89.
Xu X J. Development and prospects of forestry biological energy [J]. Journal of Shanxi Agricultural Sciences, 2008, 36(8): 88-89.
4 陈冠益, 高文学, 颜蓓蓓, 等. 生物质气化技术研究现状与发展[J]. 燃气气源与加工利用, 2006, 26(7): 20-26.
Chen G Y, Gao W X, Yan B B, et al. Present research status and development of biomass gasification technologies [J]. Gas Source and Process and Utilization, 2006, 26(7): 20-26.
5 边轶, 刘石彩, 简相坤. 生物质热解焦油的性质与化学利用研究现状[J]. 生物质化学工程, 2011, 45(2): 51-55.
Bian Y, Liu S C, Jian X K. The state art of view of research progress on characteristics and chemical utilization of tar from biomass pyrolysis [J]. Biomass Chemical Engineering, 2011, 45(2): 51-55.
6 鲍振博, 靳登超, 刘玉乐, 等. 生物质气化中焦油的产生及处理方法[J]. 农机化研究, 2011, 33(8): 172-176.
Bao Z B, Jin D C, Liu Y L, et al. Generation and treatment of tar in biomass gasification gas [J]. Journal of Agricultural Mechanization Research, 2011, 33(8): 172-176.
7 吴文广, 罗永浩, 陈祎, 等. 生物质焦油净化方法研究进展[J]. 工业加热, 2008, 37(2): 1-5.
Wu W G, Luo Y H, Chen Y, et al. The progress in tar reduction method research [J]. Industrial Heating, 2008, 37(2): 1-5.
8 袁惠新, 王宁, 付双成, 等. 生物质焦油的特性及其去除方法的研究现状[J]. 过滤与分离, 2011, (3): 45-48.
Yuan H X, Wang N, Fu S C, et al. Research on characteristics of biomass tar and the methods of its removal [J]. Journal of Filtration & Separation, 2011, (3): 45-48.
9 吴悠, 赵立欣, 孟海波, 等. 生物质热解焦油脱除方法研究进展[J]. 化工环保, 2016, 36(1): 17-21.
Wu Y, Zhao L X, Meng H B, et al. Research progress on removal methods of biomass pyrolysis tar[J]. Chemical Environmental Protection, 2016, 36(1): 17-21.
10 马帅, 胡笑颖, 董长青, 等. 生物质焦油模型化合物脱除研究进展[J]. 林产化学与工业, 2019, 39(4): 1-8.
Ma S, Hu X Y, Dong C Q, et al. Research progress in the removal of biomass tar model compounds[J]. Chemistry and Industry of Forest Products. 2019, 39(4): 1-8.
11 孙云娟, 蒋剑春. 生物质气化过程中焦油的去除方法综述[J]. 生物质化学工程, 2006, 40(2): 31-35.
Sun Y J, Jiang J C. A review of measures for tar elimination in biomass gasification processes [J]. Biomass Chemical Engineering, 2006, 40(2): 31-35.
12 鲍振博, 靳登超, 刘玉乐, 等. 生物质气化中焦油的产生及其危害性[J]. 安徽农业科学, 2011, 39(4): 2243-2244.
Bao Z B, Jin D C, Liu Y L, et al. Tar generation and its harmfulness in the process of biomass gasification [J]. Journal of Anhui Agricultural Sciences, 2011, 39(4): 2243-2244.
13 刘玉环, 朱普琪, 王允圃, 等. 生物质气化焦油处理技术的最新研究进展[J]. 现代化工, 2013, 33(11): 24-29.
Liu Y H, Zhu P Q, Wang Y P, et al. Advance in tar removal technology of biomass gasification [J]. Modern Chemical Industry, 2013, 33(11): 24-29.
14 Rabou L. Biomass tar recycling and destruction in a CFB gasifier [J]. Fuel, 2005, 84(5): 577-581.
15 Seshadri K S, Shamsi A. Effects of temperature, pressure, and carrier gas on the cracking of coal tar over a char-dolomite mixture and calcined dolomite in a fixed-bed reactor [J]. Industrial & Engineering Chemistry Research, 1998, 37(10): 3830-3837.
16 Heo D H, Lee R, Hwang J H, et al. The effect of addition of Ca, K and Mn over Ni-based catalyst on steam reforming of toluene as model tar compound [J]. Catalysis Today, 2016, 265: 95-102.
17 Behnia I, Yuan Z, Charpentier P, et al. Production of methane and hydrogen via supercritical water gasification of renewable glucose at a relatively low temperature: effects of metal catalysts and supports [J]. Fuel Processing Technology, 2016, 143: 27-34.
18 Oh G, Park S Y, Seo M W, et al. Ni/Ru–Mn/Al2O3 catalysts for steam reforming of toluene as model biomass tar [J]. Renewable Energy, 2016, 86: 841-847.
19 Nestler F, Burhenne L, Amtenbrink M J, et al. Catalytic decomposition of biomass tars: the impact of wood char surface characteristics on the catalytic performance for naphthalene removal [J]. Fuel Processing Technology, 2016, 145: 31-41.
20 Nair S A, Pemen A J M, Yan K, et al. Tar removal from biomass-derived fuel gas by pulsed corona discharges [J]. Fuel Processing Technology, 2003, 84(1): 161-173.
21 Fourcault A, Marias F, Michou U. Modelling of thermal removal of tars in a high temperature stage fed by a plasma torch [J]. Biomass and Bioenergy, 2010, 34(9): 1363-1374.
22 Nunnally T, Tsangaris A, Rabinovich A, et al. Gliding arc plasma oxidative steam reforming of a simulated syngas containing naphthalene and toluene [J]. International Journal of Hydrogen Energy, 2014, 39(23): 11976-11989.
23 Chun Y N, Kim S C, Yoshikawa K. Decomposition of benzene as a surrogate tar in a gliding arc plasma [J]. Environmental Progress & Sustainable Energy, 2013, 32(3): 837-845.
24 Jzmroz P, Kordylewski W, Wnukowski M. Microwave plasma application in decomposition and steam reforming of model tar compounds [J]. Fuel Processing Technology, 2018, 169: 1-14.
25 Rodrigo M E, Manoel F M N, Argemiro S S S, et al. Tar reforming under a microwave plasma torch [J]. Energy & Fuels, 2013, 27: 1174-1181.
26 Zhu T, Li J, Jin Y, et al. Decomposition of benzene by non-thermal plasma processing: photocatalyst and ozone effect [J]. International Journal of Environmental Science & Technology, 2008, 5(3): 375-384.
27 Saleem F, Zhang K, Harvety A. Role of CO2 in the conversion of toluene as a tar surrogate in a non-thermal plasma dielectric barrier discharge reactor[J]. Energy & Fuels, 2018, 32(4): 5164-5170.
28 Liu L, Wang Q, Song J, et al. Dry reforming of model biomass pyrolysis products to syngas by dielectric barrier discharge plasma[J]. International Journal of Hydrogen Energy, 2018, 43(22): 10281-10293.
29 Saleem F, Zhang K, Harvety A. Temperature dependence of non-thermal plasma assisted hydrocracking of toluene to lower hydrocarbons in a dielectric barrier discharge reactor[J]. Chemical Engineering Journal, 2019, 356: 1062-1069.
30 Wang B, Yao S, Peng Y, et al. Toluene removal over TiO2-BaTiO3 catalysts in an atmospheric dielectric barrier discharge[J]. Journal of Environmental Chemical Engineering, 2018, 6(4): 3819-3826.
31 王青. 微波诱导金属放电催化转化生物质焦油的研究[D]. 济南: 山东大学, 2018.
Wang Q. Study on catalytic conversion of biomass tar by microwave induced metal discharge[D]. Jinan: Shandong University, 2018.
32 甘蓉丽, 罗光前, 许洋, 等. 低温等离子体协同铜铈催化剂脱除甲苯[J]. 化工进展, 2018, 37(9): 3416-3423.
Gan R L, Luo G Q, Xu Y, et al. Low temperature plasma collaborative copper cerium catalyst removal of toluene[J]. Chemical Industry and Engineering Progress, 2018, 37(9): 3416-3423.
33 Devi L, Ptasinski K J, Janssen F J J G, et al. Catalytic decomposition of biomass tars: use of dolomite and untreated olivine [J]. Renewable Energy, 2005, 30(4): 565-587.
34 Chun Y N, Kim S C, Yoshikawa K. Destruction of anthracene using a gliding arc plasma reformer [J]. Korean Journal of Chemical Engineering, 2011, 28(8): 1713-1720.
[1] Dong WANG, Yaru LIU, Zhuo CHEN, Zunli KOU, Yuehong LU. Effects on performance of small water-source heat pump water heater with CO2 by refrigerant charge and determination of optimal value [J]. CIESC Journal, 2020, 71(S1): 397-403.
[2] Binfan JIANG, Dehong XIA, Keke AN, Peikun ZHANG, Wenqing AO. Efficient low-carbon dolomite calcination process based on CO2 looping and recovering [J]. CIESC Journal, 2020, 71(8): 3699-3709.
[3] Qianqian LI, Siyang TANG, Hairong YUE, Changjun LIU, Kui MA, Shan ZHONG, Bin LIANG. Study on the photocatalytic oxidative dehydrogenation of ethane with CO2 over Pd-Rh /TiO2 catalyst [J]. CIESC Journal, 2020, 71(8): 3556-3564.
[4] Ruqi YAN, Xianzhi HONG, Xin BAO, Jie XU, Xuexing DING. Phase-distribution regularity and sealing performance of supercritical carbon dioxide dry gas seal [J]. CIESC Journal, 2020, 71(8): 3681-3690.
[5] Wei CHEN, Meihong YU, Hongxia ZHAO. Control optimization of R744 duo-temperature supermarket refrigeration system with multi-ejector [J]. CIESC Journal, 2020, 71(7): 3266-3277.
[6] Wang YANG, Yun LI, Xiaojuan TIAN, Fan YANG, Yongfeng LI. Research progress of strengthening methods in graphene preparation by supercritical CO2 exfoliation [J]. CIESC Journal, 2020, 71(6): 2599-2611.
[7] Ruizhe ZHANG, Keke LI, Kaibo ZHANG, Wei LIU, Lisi ZHENG, Yating ZHANG. Coal-based carbon quantum dots/carbon nitride composites for photocatalytic CO2 reduction [J]. CIESC Journal, 2020, 71(6): 2788-2794.
[8] Yanpei SONG, Xiuzheng ZHUANG, Hao ZHAN, Bin XU, Xiuli YIN, Chuangzhi WU. Investigation on thermochemical conversion characteristics and regularity of co-hydrothermal carbonization solid fuel from sewage sludge and lignite [J]. CIESC Journal, 2020, 71(5): 2320-2332.
[9] Yanxia WANG, Xiude HU, Jian HAO, Qingjie GUO. The CO2 adsorption performance under flue gas for TEPA-impregnated composited oxidized activated carbon [J]. CIESC Journal, 2020, 71(5): 2333-2343.
[10] Wei CHEN, Pengyun SONG, Hengjie XU, Xuejian SUN. Effects of the real-gas characteristics of carbon dioxide with impurities on the dry gas seal performance [J]. CIESC Journal, 2020, 71(5): 2215-2229.
[11] Xun SONG, Qian FU, Jun LI, Liang ZHANG, Qiang LIAO, Xun ZHU. Numerical simulation of transport characteristics in biocathodes catalyzing carbon dioxide to methane [J]. CIESC Journal, 2020, 71(5): 2273-2282.
[12] Zhenmin LUO, Yong YANG, Fangming CHENG, Tao WANG, Zhuchuan CHANG, Bin SU, Man ZHANG. Experimental study on explosion limits parameters of propylene with dilution of nitrogen and carbon dioxide [J]. CIESC Journal, 2020, 71(4): 1922-1928.
[13] Yingze LI, Lu YANG, Qi WANG, Siyu YANG. Modeling and simulation of gasification process in BGL furnace [J]. CIESC Journal, 2020, 71(3): 1174-1188.
[14] Rui JIANG, Dongdong HU, Tao LIU, Ling ZHAO. Effect of hard segment content on microcellular foaming process of thermoplastic polyether ester elastomer using supercritical CO 2 as blowing agent [J]. CIESC Journal, 2020, 71(2): 871-878.
[15] Yang LI, Yang ZHANG, Xuanlong CHEN, Xun GONG. Effect of cyclic adsorption performance of calcium-based sorbent on enhanced biomass gasification for hydrogen production [J]. CIESC Journal, 2020, 71(2): 777-787.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI Haixia, JI Zhongli, WU Xiaolin, CHOI Joo-Hong. Numerical Investigation of Coupling Effect in Multipipe Ceramic Filter Vessel[J]. , 2008, 16(4): 558 -563 .
[2] CHEN Yongping, ZHU Wangfa, ZHANG Chengbin, SHI Mingheng. Thermal Characteristics of Heat Pipe with Axially Swallow-tailed Microgrooves[J]. , 2010, 18(2): 785 -793 .
[3] CAO Yan, ZHANG Jun, HE Jiasong, LI Huiquan, ZHANG Yi. Homogeneous Acetylation of Cellulose at Relatively High Concentrations in an Ionic Liquid[J]. , 2010, 18(3): 515 -522 .
[4] YANG Gang, SHI Hong, LIU Wenqiang, XING Weihong, XU Nanping. Investigation of Mg2+/Li+Separation by Nanofiltration[J]. , 2011, 19(4): 586 -589 .
[5]

LIANG Xiao;DING Yongsheng;WANG Huaping;HAO Kuangrong

. An intelligent cooperative decoupling controller for the water bath stretching slot in filament production[J]. , 2010, 61(8): 2144 -2148 .
[6] ZHAO Xiaodong;XU Shenglin;YANG Chengzhong.

Multivariable neural network predictive model for BOF steelmaking

[J]. , 2010, 61(8): 2111 -2115 .
[7] CAO Xiangsheng, FU Kunming, QIAN Dong, ZHU Zhaoliang, MENG Xuezheng. Effect of C/N ratio on nitrite accumulation in dentrifying process with methanol as carbon source[J]. CIESC Journal, 2010, 61(11): 2939 -2943 .
[8] LIN CHENG-SEN Wu WHEI-CHEN AND MENG CHU-KWANG (The Research Institute of Petroleum Science, Ministry of Petroleum Industry). PILOT PLANT STUDIES OF PLATFORMING IN MULTIPLE ADIABATIC REACTORS[J]. , 1959, 10(2): 89 -97 .
[9] WU HSIANG-LUNG, LIU CHI-YONG, CHANG DENG-CHI, LI YANG-SHAN AND LEE HAO (The Research Institute of Rubber Industry, MCI). VULCANIZING OF THICK RUBBER GOODS[J]. , 1959, 10(2): 108 -123 .
[10] . [J]. , 1960, 11(2): 138 -149 .