CIESC Journal ›› 2020, Vol. 71 ›› Issue (10): 4808-4819.doi: 10.11949/0438-1157.20200780

• Material science and engineering, nanotechnology • Previous Articles     Next Articles

Synthesis of PEGylation hydroxyapatite drug delivery system and its dual channels fluorescence imaging

Xiaojing LI(),Wen SUN,Yao KANG,Jiangli FAN(),Xiaojun PENG   

  1. State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, Liaoning, China
  • Received:2020-06-19 Revised:2020-07-23 Online:2020-10-05 Published:2020-08-10
  • Contact: Jiangli FAN E-mail:xiaojingLI1991@mail.dlut.edu.cn;fanjl@dlut.edu.cn

Abstract:

PEGylated drug delivery systems (DDSs) can overcome the side effects of traditional chemotherapy by enhancing drug permeability and retention (EPR) effects. In this work, DOX@HAP (hydroxyapatite) was initially fabricated via the coprecipitation and hydrothermal method, further functionalized with Cy (cyanine) by coupling reaction of APTES and then introduced hydrophilic PEG chains by using copper(I)-catalyzed alkyne–azide cycloaddition reaction. Physicochemical properties including the morphology, particle size and phase composition, were characterized by TEM, SEM, particle size analyzer, FTIR, XPS and XRD. The encapsulation efficiency and drug release profile of DOX@HAP-Cy-PEG were analyzed by UV-Vis spectrophotometry. Furthermore, the cellular uptake of DOX@HAP-Cy-PEG nanoparticles in Hela and HepG2 cells was monitored by the dual channels fluorescence imaging of DOX and Cy. The results showed that DOX@HAP-Cy-PEG nanoparticles could be used to real-time monitor the dynamic distribution of DDSs in Hela and HepG2 cells by dual channels.

Key words: hydroxyapatite, drug delivery system, cyanine, dual channels, fluorescence imaging

CLC Number: 

  • TQ 34

Fig.1

Reaction equation of cyanine dyes and PEG alkynyl"

Fig.2

TEM (a) and SEM (b) images of DOX@HAP. DLS analysis (c), zeta potential (d) and PDI values (e) of DOX@HAP,DOX@HAP-Cy and DOX@HAP-Cy-PEG"

Fig.3

XPS (a) and XRD (b) patterns of DOX@HAP. FTIR spectra (c) of HAP,DOX@HAP,DOX@HAP-Cy and DOX@HAP-Cy-PEG"

Fig.4

The absorption spectra (a) and fluorescence spectra (b) of DOX,Cy and DOX@HAP-Cy-PEG"

Fig.5

The absorption spectra of the supernatant liquid of DOX@HAP treated with PBS at pH 3.0 for 24 h(a). The linear relationship between UV absorption (λab = 500 nm) and concentrations of DOX: (A = 16.27C + 0.0476)(b). Release profiles of DOX from DOX@HAP-Cy-PEG in PBS buffer with different pH (5.0,6.5,7.4) in 24 h(c)"

Fig.6

Dose-dependent cytotoxicity of Hela and HepG2 treated with HAP (a),HAP-Cy-PEG (b) and DOX@HAP-Cy-PEG (c) at various concentrations"

Fig.7

CLSM images of Hela and HepG2 cells incubated with DOX@HAP-Cy-PEG for 4 h by dual channels fluorescence imaging"

Fig.A1

Synthetic route of PEG-alkyne"

Fig.A2

Synthetic route of DOX@HAP-Cy-PEG"

Fig.A3

ESI-MS spectrum of compound 4"

Fig.A4

1H NMR spectrum of compound 4"

Fig.A5

ESI-MS spectrum of Cy"

Fig.A6

1H NMR spectrum of Cy"

Table A1

XPS elemental analysis of DOX@HAP"

ElementPeak binding energy/eVContent/%(atom)
P132.758.96
Ca346.8814.6
C284.4927.75
O530.8948.7
1 Maia A L C, Ferreira C A, Barros A L B, et al. Vincristine-loaded hydroxyapatite nanoparticles as a potential delivery system for bone cancer therapy[J]. J. Drug Target., 2018, 26(7): 592-603.
2 Kang Y, Sun W, Fan J, et al. Ratiometric real-time monitoring of hydroxyapatite–doxorubicin nanotheranostic agents for on-demand tumor targeted chemotherapy[J]. Mater. Chem. Front., 2018, 2(10): 1791-1798.
3 Salamanna F, Giavaresi G, Parrilli A, et al. Antiresorptive properties of strontium substituted and alendronate functionalized hydroxyapatite nanocrystals in an ovariectomized rat spinal arthrodesis model[J]. Mater. Sci. Eng. C Mater. Biol. Appl., 2019, 95: 355-362.
4 康垚, 王素真, 樊江莉, 等. 无机纳米药物载体在肿瘤诊疗中的研究进展[J]. 化工学报, 2018, 69(1): 128-140.
Kang Y, Wang S Z, Fan J L, et al. Progress in inorganic nanomedicine carriers for tumor diagnosis and treatments[J]. CIESC Journal, 2018, 69(1): 128-140
5 Jiang F, Wang D P, Ye S, et al. Strontium-substituted, luminescent and mesoporous hydroxyapatite microspheres for sustained drug release[J]. J Mater. Sci. Mater. Med., 2014, 25(2): 391-400.
6 Xu Y J, Dong L, Lu Y, et al. Magnetic hydroxyapatite nanoworms for magnetic resonance diagnosis of acute hepatic injury[J]. Nanoscale, 2016, 8(3): 1684-1690.
7 Abbasi Aval N, Pirayesh Islamian J, Hatamian M, et al. Doxorubicin loaded large-pore mesoporous hydroxyapatite coated superparamagnetic Fe3O4 nanoparticles for cancer treatment[J]. Int. J. Pharm., 2016, 509(1/2): 159-167.
8 Govindan B, Swarna Latha B, Nagamony P, et al. Designed synthesis of nanostructured magnetic hydroxyapatite based drug nanocarrier for anti-cancer drug delivery toward the treatment of human epidermoid carcinoma[J]. Nanomaterials, 2017, 7(6): 138-154.
9 Yang Y H, Liu C H, Liang Y H, et al. Hollow mesoporous hydroxyapatite nanoparticles (hmHANPs) with enhanced drug loading and pH-responsive release properties for intracellular drug delivery[J]. J. Mater. Chem. B, 2013, 1(19): 2447-2450.
10 Sarkar C, Chowdhuri A R, Kumar A, et al. One pot synthesis of carbon dots decorated carboxymethyl cellulose-hydroxyapatite nanocomposite for drug delivery, tissue engineering and Fe3+ ion sensing[J]. Carbohydr. Polym., 2018, 181: 710-718.
11 Sun W, Fan J, Wang S, et al. Biodegradable drug-loaded hydroxyapatite nanotherapeutic agent for targeted drug release in tumors[J]. ACS Appl. Mater. Interfaces, 2018, 10(9): 7832-7840.
12 Xiong H, Du S, Ni J, et al. Mitochondria and nuclei dual-targeted heterogeneous hydroxyapatite nanoparticles for enhancing therapeutic efficacy of doxorubicin[J]. Biomaterials, 2016, 94: 70-83.
13 Pan L, Liu J, He Q, et al. MSN-mediated sequential vascular-to-cell nuclear-targeted drug delivery for efficient tumor regression[J]. Adv. Mater., 2014, 26(39): 6742-6748.
14 Wu J B, Shi C, Chu G C, et al. Near-infrared fluorescence heptamethine carbocyanine dyes mediate imaging and targeted drug delivery for human brain tumor[J]. Biomaterials, 2015, 67: 1-10.
15 Gorka A P, Nani R R, Zhu J, et al. A near-IR uncaging strategy based on cyanine photochemistry[J]. J. Am. Chem. Soc., 2014, 136(40): 14153-14159.
16 Nani R R, Gorka A P, Nagaya T, et al. Near-IR light-mediated cleavage of antibody-drug conjugates using cyanine photocages[J]. Angew. Chem. Int. Ed., 2015, 54(46): 1-5.
17 Gorka A P, Yamamoto T, Zhu J, et al. Cyanine photocages enable spatial control of inducible cre-mediated recombination[J]. Chembiochem, 2018, 19(12): 1239-1243.
18 Ma K, Sai H, Wiesner U. Ultrasmall sub-10 nm near-infrared fluorescent mesoporous silica nanoparticles[J]. J. Am. Chem. Soc., 2012, 134(32): 13180-13183.
19 Nissinen T, Nakki S, Laakso H, et al. Tailored dual PEGylation of inorganic porous nanocarriers for extremely long blood circulation in vivo[J]. ACS Appl. Mater. Interfaces, 2016, 8(48): 32723-32731.
20 Zhao L, Yuan W, Ang C Y, et al. Silica-polymer hybrid with self-assembled PEG corona excreted rapidly via a hepatobiliary route[J]. Adv. Funct. Mater., 2016, 26(18): 3036-3047.
21 Su Y Y, Teng Z, Yao H, et al. A Multifunctional PB@mSiO2-PEG/DOX nanoplatform for combined photothermal- chemotherapy of tumor[J]. ACS Appl. Mater. Interfaces, 2016, 8(27): 17038-17046.
22 Ren T B, Xia W J, Dong H Q, et al. Sheddable micelles based on disulfide-linked hybrid PEG-polypeptide copolymer for intracellular drug delivery[J]. Polymer, 2011, 52(16): 3580-3586.
23 Ni R, Zhu J, Xu Z, et al. A self-assembled pH/enzyme dual-responsive prodrug with PEG deshielding for multidrug-resistant tumor therapy[J]. J. Mater. Chem. B, 2020, 8(6): 1290-1301.
24 Selli D, Motta S, Di Valentin C. Impact of surface curvature, grafting density and solvent type on the PEGylation of titanium dioxide nanoparticles[J]. J. Colloid Interface Sci., 2019, 555: 519-531.
25 Zhou M, Huang H, Wang D, et al. Light-triggered PEGylation/dePEGylation of the nanocarriers for enhanced tumor penetration [J]. Nano Lett., 2019, 19(6): 3671-3675.
26 Joh D Y, Zimmers Z, Avlani M, et al. Architectural modification of conformal PEG-bottlebrush coatings minimizes anti-PEG antigenicity while preserving stealth properties[J]. Adv. Healthc. Mater., 2019, 8(8): 1801177-1801190.
27 Hammarson M, Andersson J, Li S, et al. Molecular AND-logic for dually controlled activation of a DNA-binding spiropyran[J]. Chem. Commun., 2010, 46(38): 7130-7132.
28 Kumar K, Sagar S, Esau L, et al. Synthesis of novel 1H-1,2,3-triazole tethered C-5 substituted uracil-isatin conjugates and their cytotoxic evaluation[J]. Eur. J. Med. Chem., 2012, 58: 153-159.
29 Kang N Y, Park S J, Ang X W, et al. A macrophage uptaking near-infrared chemical probe CDnir7 for in vivo imaging of inflammation[J]. Chem. Commun., 2014, 50: 6589-6591.
30 Li B, Lu L, Zhao M, et al. An efficient 1064 nm NIR-II excitation fluorescent molecular dye for deep-tissue high-resolution dynamic bioimaging[J]. Angew. Chem. Int. Ed., 2018, 57(25): 7483-7487.
31 Chen G, Song F, Wang J, et al. FRET spectral unmixing: a ratiometric fluorescent nanoprobe for hypochlorite[J]. Chem. Commun., 2012, 48: 2949-2951.
32 Sun W, Parowatkin M, Steffen W, et al. Ruthenium-containing block copolymer assemblies: red-light-responsive metallopolymers with tunable nanostructures for enhanced cellular uptake and anticancer phototherapy[J]. Adv. Healthc. Mater., 2016, 5(4): 467-473.
33 Zhen X, Zhang J, Huang J, et al. Macrotheranostic probe with disease-activated near-infrared fluorescence, photoacoustic, and photothermal signals for imaging-guided therapy[J]. Angew. Chem. Int. Ed., 2018, 57(26): 7804-7808.
34 Ha S W, Park J, Habib M M, et al. Nano-hydroxyapatite stimulation of gene expression requires Fgf receptor, phosphate transporter, and Erk1/2 signaling[J]. ACS Appl. Mater. Interfaces, 2017, 9(45): 39185-39196.
35 任欣, 金蜀鄂, 李玉宝, 等. 纳米羟基磷灰石增强聚己内酯/明胶纤维膜的制备及其性能[J]. 化工进展, 2020, 39(4): 1439-1446.
Ren X, Jin S E, Li Y B, et al. Preparation and performance of nano-hydroxyapatite reinforced polycaprolactone/gelatin fibrous membrane for guided tissue regeneration[J]. Chem. Ind. & Eng. Pro., 2020, 39(4): 1439-1446.
[1] YOU Donghui, CHENG Zhiliang, LI Gan, ZHANG Feng, LYU Fanglei, JIANG Guangbin, QUAN Xuejun, WEI Jianwei, YANG Lu, LI Shuo. Preparation and catalytic degradation property research of novel phthalocyanine [J]. CIESC Journal, 2018, 69(12): 5090-5099.
[2] XU Yanming, ZHAO Ming, LI Jian, REN Qiang, WANG Chenyi. Visible near-infrared amino phthalocyanine-titanium dioxide photocatalyst: preparation and performance [J]. CIESC Journal, 2016, 67(5): 1915-1921.
[3] ZHANG Juan, HU Yanhui, REN Tengjie, LI Weikang, ZHAO Dishun. Photocatalytic oxidation desulfurization by iron phthalocyanine supported on Ti-MCM-41 [J]. CIESC Journal, 2015, 66(9): 3437-3443.
[4] ZHAO Ming, LI Jian, JI Junling, REN Qiang, WANG Chenyi, AI Baolin. Synthesis and application of soluble near-infrared absorption amino phthalocyanine dyes [J]. CIESC Journal, 2015, 66(4): 1577-1584.
[5] ZHANG Juan, REN Tengjie, HU Yanhui, LI Junpan, WANG Chunfang, ZHAO Dishun. Catalytic performance of metal phthalocyanine loaded on MCM-41 molecular sieve in oxidation desulfurization [J]. CIESC Journal, 2014, 65(8): 3012-3018.
[6] LIU Guijin, WANG Hongdi, JIANG Yanbin. Research progress of Zein as carrier for drug delivery systems [J]. CIESC Journal, 2013, 64(10): 3493-3504.
[7] WU Qingxi, YAO Shanjing. Oral colon-specific drug delivery system and its preparation [J]. CIESC Journal, 2013, 64(1): 210-222.
[8] LI Wenfeng, LIU Guijin, LI Lixian, WU Juan, Lü Yangxiao, JIANG Yanbin. Effect of process parameters on co-precipitation of paclitaxel and poly(L-lactic acid) by supercritical antisolvent process [J]. Chin.J.Chem.Eng., 2012, 20(4): 803-813.
[9] NING Zhang-Lei, CHANG Zhi-Dong, LI Wen-Jun, SUN Chang-Yan, ZHANG Jing-Hua, LIU Yang- . Solvothermal synthesis and optical performance of one-dimensional strontium hydroxyapatite nanorod [J]. , 2012, 20(1): 89-94.
[10] SHEN Juan,JIN Bo,JIANG Qiying,HU Yamin,ZHONG Guoqing,HUO Jichuan. Preparation,properties and applications of hydroxyapatite/synthetic polymer composites [J]. , 2011, 30(8): 1749-.
[11] WEN Xin,AN Shengjun. Progress of growth factors containing wound dressing [J]. , 2009, 28(8): 1435-.
[12] SHI Yan,NING Ping,WAND Xueqian,JIANG Ming. Treatment of H2S by modified activated carbon [J]. , 2009, 28(5): 890-.
[13] ZHAO Xuhui, YANG Lingfang, ZUO Yu, XIONG Jinping. Hydroxyapatite Coatings on Titanium Prepared by Electrodeposition in a Modified Simulated Body Fluid [J]. , 2009, 17(4): 667-671.
[14] ZHANG Dan. Application of membrane filter press in pigment industry [J]. , 2009, 28(2): 342-.
[15] LÜ Caixia,YAO Zihua. Progress of hydroxyapatite/ chitosan composite materials [J]. , 2006, 25(7): 755-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HAN Jin, ZHU Tong, IMAI Tsuyoshi, XIE Liyang, XU Chenghai, NOZAKI Tsutomu. Solubilization of excess sludge by high speed rotary disk[J]. CIESC Journal, 2008, 59(2): 478 -483 .
[2] HE Qing, LI Jinlong, HE Changchun, PENG Changjun, LIU Honglai. Modeling of density and vapor-liquid equilibrium for alcohol-amine systems with equation of state[J]. CIESC Journal, 2010, 61(4): 812 -819 .
[3] Ye Shichao (Department of Chemical Engineering,Sichuan University, Chengdu 610065). DISTRIBUTION OF MOISTURE CONTENT FOR COMPOUND DRYERS OF FLASH AND FLUIDIZATION WITH CIRCULATING SYSTEM OF SOLIDS[J]. , 2000, 51(1): 63 -69 .
[4] PAN Haipeng, XU Yuying. Double variable PID decoupling control of headbox based on BP neural network[J]. CIESC Journal, 2010, 61(8): 2154 -2158 .
[5] WU Meirong, ZHANG Rui, ZHOU Jun, XIE Xinxin, YONG Xiaoyu, YAN Zhiying, GE Mingmin, ZHENG Tao. Effect of temperature on methanogens metabolic pathway and structures of predominant bacteria[J]. CIESC Journal, 2014, 65(5): 1602 -1606 .
[6] WEN Yan, WANG Jiashun, YUE Hailong, LI Bin, LIU Bin. Equivalent straight pipe heat transfer model of cement clinker porous media in grate cooler[J]. CIESC Journal, 2014, 65(9): 3434 -3440 .
[7] YU Junwu, CHEN Yongli, HE Rong, ZHANG Yanguo. Numerical simulation of coal pyrolysis using FD model[J]. CIESC Journal, 2014, 65(9): 3592 -3598 .
[8] LIU Changjun, GUO Qiuting, YE Jingyun, SUN Kaihang, FAN Zhigang, GE Qingfeng. Perspective on catalyst investigation for CO2 conversion and related issues[J]. CIESC Journal, 2016, 67(1): 6 -13 .
[9] WANG Ruirui, ZHAO Youjing, SHAO Mingfei, XIANG Xu, DUAN Xue. Recent progresses in water oxidation over layered double hydroxide catalysts[J]. CIESC Journal, 2016, 67(1): 54 -72 .
[10] DONG Jian, ZHANG Shenglu, SUN Weizhen, XU Zhimei, ZHAO Ling. Liquid-phase oxidation kinetics of sec-butylbenzene[J]. CIESC Journal, 2018, 69(11): 4737 -4745 .