CIESC Journal ›› 2020, Vol. 71 ›› Issue (10): 4688-4695.doi: 10.11949/0438-1157.20200765
• Separation engineering • Previous Articles Next Articles
Qingwei GAO1,2(),Yao QIN1,Yumeng ZHANG1,Shanshan WANG1,Yudan ZHU1(
),Xiaoyan JI2,Xiaohua LU1
CLC Number:
1 | Sholl D S, Lively R P. Seven chemical separations to change the world[J]. Nature, 2016, 532(7600): 435-437. |
2 | Liu G P, Jin W Q, Xu N P. Graphene-based membranes[J]. Chemical Society Reviews, 2015, 44(15): 5016-5030. |
3 | Whitby M, Quirke N. Fluid flow in carbon nanotubes and nanopipes[J]. Nature Nanotechnology, 2007, 2(2): 87-94. |
4 | Kataoka T, Tsuru T, Nakao S I, et al. Permeation equations developed for prediction of membrane performance in pervaporation, vapor permeation and reverse osmosis based on the solution-diffusion model[J]. Journal of Chemical Engineering of Japan, 1991, 24(3): 326-333. |
5 | 金万勤, 徐南平. 限域传质分离膜[J]. 化工学报, 2018, 69(1): 50-56. |
Jin W Q, Xu N P. Membrane separation based on mechanism of confined mass transfer[J]. CIESC Journal, 2018, 69(1): 50-56. | |
6 | 朱育丹, 陆小华, 谢文龙, 等. 基于限域传质机制的膜过程定量描述的研究进展[J]. 科学通报, 2017, 62(2/3): 223-232. |
Zhu Y D, Lu X H, Xie W L, et al. The progress of quantitatively description of membrane process based on the mechanism of nanoconfined mass transfer[J]. Chinese Science Bulletin, 2017, 62: 223-232. | |
7 | Li J H, Zhang J, Ge W, et al. Multi-scale methodology for complex systems[J]. Chemical Engineering Science, 2004, 59(8): 1687-1700. |
8 | Huang W, Li J, Edwards P P. Mesoscience: exploring the common principle at mesoscales[J]. National Science Review, 2017, 5(3): 321-326. |
9 | Park H B, Kamcev J, Robeson L M, et al. Maximizing the right stuff: the trade-off between membrane permeability and selectivity[J]. Science, 2017, 356(6343): eaab0530. |
10 | Wang L, Boutilier M S H, Kidambi P R, et al. Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes[J]. Nature Nanotechnology, 2017, 12(6): 509-522. |
11 | Zhao J, He G W, Liu G H, et al. Manipulation of interactions at membrane interfaces for energy and environmental applications[J]. Progress in Polymer Science, 2018, 80: 125-152. |
12 | Liu G P, Jin W Q. Graphene oxide membrane for molecular separation: challenges and opportunities[J]. Science China-Materials, 2018, 61(8): 1021-1026. |
13 | Zhao J, Jin W Q. Manipulation of confined structure in alcohol-permselective pervaporation membranes[J]. Chinese Journal of Chemical Engineering, 2017, 25(11): 1616-1626. |
14 | Zhu Y D, Lu X H, Xie W L, et al. The progress of quantitatively description of membrane process based on the mechanism of nanoconfined mass transfer[J]. Chinese Science Bulletin, 2017, 62(0023-074X): 223. |
15 | Ma R, Cao D, Zhu C, et al. Atomic imaging of the edge structure and growth of a two-dimensional hexagonal ice[J]. Nature, 2020, 577(7788): 60-63. |
16 | Yan H L, Wu F, Xue Y F, et al. Water adsorption and transport on oxidized two-dimensional carbon materials[J]. Chemistry-a European Journal, 2019, 25(16): 3969-3978. |
17 | Antony A C, Liang T, Sinnott S B. Nanoscale structure and dynamics of water on Pt and Cu surfaces from MD simulations[J]. Langmuir, 2018, 34(39): 11905-11911. |
18 | Bampoulis P, Witteveen J P, Kooij E S, et al. Structure and dynamics of confined alcohol-water mixtures[J]. ACS Nano, 2016, 10(7): 6762-6768. |
19 | Severin N, Sokolov I M, Rabe J P. Dynamics of ethanol and water mixtures observed in a self-adjusting molecularly thin slit pore[J]. Langmuir, 2014, 30(12): 3455-3459. |
20 | Kommu A, Singh J K. Separation of ethanol and water using graphene and hexagonal boron nitride slit pores: a molecular dynamics study[J]. The Journal of Physical Chemistry C, 2017, 121(14): 7867-7880. |
21 | Zhao M, Yang X. Segregation structures and miscellaneous diffusions for ethanol/water mixtures in graphene-based nanoscale pores[J]. Journal of Physical Chemistry C, 2015, 119(37): 21664-21673. |
22 | Lu Y M, Chen W, Wang Y L, et al. A space-confined strategy toward large-area two-dimensional crystals of ionic liquid[J]. Physical Chemistry Chemical Physics, 2020, 22(4): 1820-1825. |
23 | Mao X W, Brown P, Cervinka C, et al. Self-assembled nanostructures in ionic liquids facilitate charge storage at electrified interfaces[J]. Nature Materials, 2019, 18(12): 1350-1357. |
24 | Wang C, Qian C, Li Z, et al. Molecular insights into the abnormal wetting behavior of ionic liquids induced by the aolidified ionic layer[J]. Industrial & Engineering Chemistry Research, 2020, 59(16): 8028-8036. |
25 | Wang S, Xie Y, He G, et al. Graphene oxide membranes with heterogeneous nanodomains for efficient CO2 separations[J]. Angewandte Chemie International Edition, 2017, 56(45): 14246-14251. |
26 | Cao W, Tow G M, Lu L, et al. Diffusion of CO2/CH4 confined in narrow carbon nanotube bundles[J]. Molecular Physics, 2016, 114(16/17): 2530-2540. |
27 | Wu X, Cui X, Wu W, et al. Elucidating ultrafast molecular permeation through well-defined 2D nanochannels of lamellar membranes[J]. Angewandte Chemie International Edition, 2019, 58(51): 18524-18529. |
28 | Zhao D, Zhao J, Ji Y, et al. Facilitated water-selective permeation via PEGylation of graphene oxide membrane[J]. Journal of Membrane Science, 2018, 567: 311-320. |
29 | Dou H, Jiang B, Xu M, et al. Boron nitride membranes with a distinct nanoconfinement effect for efficient ethylene/ethane deparation[J]. Angewandte Chemie International Edition, 2019, 58(39): 13969-13975. |
30 | Liu R, Arabale G, Kim J, et al. Graphene oxide membrane for liquid phase organic molecular separation[J]. Carbon, 2014, 77: 933-938. |
31 | Yeh T M, Wang Z, Mahajan D, et al. High flux ethanol dehydration using nanofibrous membranes containing graphene oxide barrier layers[J]. Journal of Materials Chemistry A, 2013, 1(41): 12998-13003. |
32 | Tang Y P, Paul D R, Chung T S. Free-standing graphene oxide thin films assembled by a pressurized ultrafiltration method for dehydration of ethanol[J]. Journal of Membrane Science, 2014, 458: 199-208. |
33 | Hung W S, An Q F, De Guzman M, et al. Pressure-assisted self-assembly technique for fabricating composite membranes consisting of highly ordered selective laminate layers of amphiphilic graphene oxide[J]. Carbon, 2014, 68: 670-677. |
34 | Huang K, Liu G, Shen J, et al. High-efficiency water-transport channels using the synergistic effect of a hydrophilic polymer and graphene oxide laminates[J]. Advanced Functional Materials, 2015, 25(36): 5809-5815. |
35 | Tsou C H, An Q F, Lo S C, et al. Effect of microstructure of graphene oxide fabricated through different self-assembly techniques on 1-butanol dehydration[J]. Journal of Membrane Science, 2015, 477: 93-100. |
36 | Zhao S, Hu Y, Yu X, et al. Surface wettability effect on fluid transport in nanoscale slit pores[J]. AIChE Journal, 2017, 63(5): 1704-1714. |
37 | Chen G, Zhu H, Hang Y, et al. Simultaneously enhancing interfacial adhesion and pervaporation separation performance of PDMS/ceramic composite membrane via a facile substrate surface grafting approach[J]. AIChE Journal, 2019, 65(11): e16773. |
[1] | Surui SUN, Dechang WANG, Jincui ZHANG, Zhen LIU, Yanhui LI. Analysis of heat and mass transfer characteristics during energy discharging in membrane energy accumulator [J]. CIESC Journal, 2020, 71(S1): 158-165. |
[2] | Bowen LIU, Shuai DENG, Shuangjun LI, Li ZHAO, Zhenyu DU, Lijin CHEN. Experimental investigation on energy-efficiency performance of temperature swing adsorption system for CO2 capture [J]. CIESC Journal, 2020, 71(S1): 382-390. |
[3] | Puxu LIU, Chaohui HE, Libo LI, Jinping LI. Stable mixed metal-organic framework for efficient C2H6/C2H4 separation [J]. CIESC Journal, 2020, 71(9): 4211-4218. |
[4] | Guoyu WEN, Wei WANG, Rui XIE, Xiaojie JU, Zhuang LIU, Liangyin CHU. Recent progress of hydrogel materials in the field of enrichment and separation of metal ions [J]. CIESC Journal, 2020, 71(9): 3866-3875. |
[5] | Long TIAN, Ting LIU, Kening SUN. Research progress of graphene oxide membrane for water purification [J]. CIESC Journal, 2020, 71(9): 4112-4130. |
[6] | Xiaobin JIANG, Guoxin SUN, Gaohong HE. Research progress of high-efficiency membrane distillation crystallization process [J]. CIESC Journal, 2020, 71(9): 3905-3918. |
[7] | Yi GAO, Yahui CAO, Jieping FAN. Study on crystallization separation of ursolic acid and oleanolic acid in ionic liquid [J]. CIESC Journal, 2020, 71(8): 3633-3643. |
[8] | Shanhong MA, Feng YE, Yanhong WANG, Xuemei LANG, Shuanshi FAN, Gang LI. Permeation properties and regeneration of a ZSM-5 zeolite membrane for bio-oil dehydration [J]. CIESC Journal, 2020, 71(7): 3345-3353. |
[9] | Yuanyuan CAI,Baitao GUO,Weihong XING,Congjie GAO. Progress research on development of membrane technology and materials for health industry [J]. CIESC Journal, 2020, 71(7): 2921-2932. |
[10] | Yajie WANG,Lei LI,Qian ZHANG,Qian LI,Wangliang LI. Progress of magnetically responsive membranes [J]. CIESC Journal, 2020, 71(7): 2933-2944. |
[11] | Erfu HUO, Yingchun LI, Shuai YANG, Ming FENG, Weiqin CHENG, Bonan WANG, Xinjun WEI. Study on separation process of dicyclohexyl ether by catalytic hydrogenation from cyclohexanol distillation residue [J]. CIESC Journal, 2020, 71(7): 3132-3139. |
[12] | Hui YANG, Wenhao DAI, Rongxiu LU, Jianyong ZHU. Simulation of rare earth extraction process based on separation coefficient correction [J]. CIESC Journal, 2020, 71(7): 3180-3190. |
[13] | Jia JU, Wenxu QI, Pengfei KONG, Jiayu TANG, Feixue LIANG, Xiaoxin ZHANG, Gaohong HE, Lei YANG. Preparation of TiO2/PVDF blend microfiltration membrane and its adsorption of bilirubin [J]. CIESC Journal, 2020, 71(6): 2705-2712. |
[14] | Xiaoyu DAI, Yuan en MA, Zhiming XU, Linzhou ZHANG, Suoqi ZHAO, Chunming XU. Effects of composition distribution of catalytic slurry oils on optical texture of mesophase pitch [J]. CIESC Journal, 2020, 71(6): 2678-2687. |
[15] | Dongyang MAO, Dan YANG, Jieping FAN. Preparation and properties of graphene oxide hybrid molecularly imprinted composite membranes [J]. CIESC Journal, 2020, 71(6): 2900-2911. |
|