CIESC Journal ›› 2020, Vol. 71 ›› Issue (10): 4490-4501.doi: 10.11949/0438-1157.20200759

• Reviews and monographs • Previous Articles     Next Articles

Mesoscopic strategies and molecular design of diaphragm for electrochemical reactors

Cunpu LI(),Jianchuan WANG,Zidong WEI()   

  1. School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
  • Received:2020-06-16 Revised:2020-07-23 Online:2020-10-05 Published:2020-08-10
  • Contact: Zidong WEI E-mail:lcp@cqu.edu.cn;zdwei@cqu.edu.cn

Abstract:

The diaphragm material in the electrochemical reactor is a special material that separates the positive electrode and the negative electrode on the electronic path but keeps the ion transport path open. As one of the three critical materials in the electrochemical reactor, the separating diaphragm must be stable in the crucial acidic/basic, strong electric field strength, and other complex micro-environments. In this review, we focus on the molecular design of the separating diaphragm inside the electrochemical reactors. The mesoscopic strategies to regulate electrochemical properties and chemical stabilities of the separating diaphragm were discussed. The purpose of this review is to set up a link between the molecular structure of the separating diaphragm and the performances of the electrochemical reactors in terms of mesoscopic strategies.

Key words: molecular design, chemical composition, energy conversion, lithium sulfur battery, fuel cell

CLC Number: 

  • TK 91.8
68 Ren R, Zhang S, Miller H A, et al. Facile preparation of an ether-free anion exchange membrane with pendant cyclic quaternary ammonium groups[J]. ACS Applied Energy Materials, 2019, 2(7): 4576-4581.
69 Arges C G, Zhang L. Anion exchange membranes􀆳 evolution toward high hydroxide ion conductivity and alkaline resiliency[J]. ACS Applied Energy Materials, 2018, 1(7): 2991-3012.
1 Zhou G, Li L, Wang D W, et al. A flexible sulfur-graphene-polypropylene separator integrated electrode for advanced Li-S batteries[J]. Advanced Materials, 2015, 27(4): 641-647.
2 Yao H, Yan K, Li W, et al. Improved lithium-sulfur batteries with a conductive coating on the separator to prevent the accumulation of inactive S-related species at the cathode–separator interface[J]. Energy & Environmental Science, 2014, 7(10): 3381-3390.
3 Chung S H, Manthiram A. Bifunctional separator with a light-weight carbon-coating for dynamically and statically stable lithium-sulfur batteries[J]. Advanced Functional Materials, 2014, 24(33): 5299-5306.
4 Gu X, Tong C, Lai C, et al. A porous nitrogen and phosphorous dual doped graphene blocking layer for high performance Li-S batteries[J]. Journal of Materials Chemistry A, 2015, 3(32): 16670-16678.
5 Jin Z, Xie K, Hong X, et al. Application of lithiated Nafion ionomer film as functional separator for lithium sulfur cells[J]. Journal of Power Sources, 2012, 218: 163-167.
6 Hao Z, Yuan L, Li Z, et al. High performance lithium-sulfur batteries with a facile and effective dual functional separator[J]. Electrochimica Acta, 2016, 200: 197-203.
7 Luo X, Lu X, Zhou G, et al. Ion-selective polyamide acid nanofiber separators for high-rate and stable lithium–sulfur batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(49): 42198-42206.
8 Peng Q, Yu F, Wang W, et al. Ultralight polyethylenimine/porous carbon modified separator as an effective polysulfide-blocking barrier for lithium-sulfur battery[J]. Electrochimica Acta, 2019, 299: 749-755.
9 Yu X, Wu H, Koo J H, et al. Tailoring the pore size of a polypropylene separator with a polymer having intrinsic nanoporosity for suppressing the polysulfide shuttle in lithium-sulfur batteries[J]. Advanced Energy Materials, 2020, 10(1): 1902872.
10 Zhang Z, Lai Y, Zhang Z, et al. Al2O3-coated porous separator for enhanced electrochemical performance of lithium sulfur batteries[J]. Electrochimica Acta, 2014, 129: 55-61.
70 Chen J, Li C, Wang J, et al. A general strategy to enhance the alkaline stability of anion exchange membranes[J]. Journal of Materials Chemistry A, 2017, 5(13): 6318-6327.
11 Zhang J, Rao Q, Jin B, et al. Cerium oxide embedded bilayer separator enabling fast polysulfide conversion for high-performance lithium-sulfur batteries[J]. Chemical Engineering Journal, 2020, 388: 124120.
12 Shao H, Wang W, Zhang H, et al. Nano-TiO2 decorated carbon coating on the separator to physically and chemically suppress the shuttle effect for lithium-sulfur battery[J]. Journal of Power Sources, 2018, 378: 537-545.
13 Song X, Chen G, Wang S, et al. Self-assembled close-packed MnO2 nanoparticles anchored on a polyethylene separator for lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2018, 10(31): 26274-26282.
14 Hong X J, Song C L, Yang Y, et al. Cerium based metal-organic frameworks as an efficient separator coating catalyzing the conversion of polysulfides for high performance lithium–sulfur batteries[J]. ACS Nano, 2019, 13(2): 1923-1931.
15 Cai W, Li G, Zhang K, et al. Conductive nanocrystalline niobium carbide as high‐efficiency polysulfides tamer for lithium‐sulfur batteries[J]. Advanced Functional Materials, 2018, 28(2): 1704865.
16 Ghazi Z A, He X, Khattak A M, et al. MoS2/celgard separator as efficient polysulfide barrier for long-life lithium-sulfur batteries[J]. Advanced Materials, 2017, 29(21): 1606817.
17 Wang P, Bao J, Lv K, et al. Rational design of a gel-polymer-inorganic separator with uniform lithium-ion deposition for highly stable lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2019, 11(39): 35788-35795.
18 Hwang J Y, Kim H M, Lee S K, et al. High-energy, high-rate, lithium-sulfur batteries: synergetic effect of hollow TiO2-webbed carbon nanotubes and a dual functional carbon‐paper interlayer[J]. Advanced Energy Materials, 2016, 6(1): 1501480.
19 Dong Q, Shen R, Li C, et al. Construction of soft base tongs on separator to grasp polysulfides from shuttling in lithium-sulfur batteries[J]. Small, 2018, 14(52): e1804277.
20 Sun J, Sun Y, Pasta M, et al. Entrapment of polysulfides by a black‐phosphorus‐modified separator for lithium-sulfur batteries[J]. Advanced Materials, 2016, 28(44): 9797-9803.
21 Song R, Fang R, Wen L, et al. A trilayer separator with dual function for high performance lithium-sulfur batteries[J]. Journal of Power Sources, 2016, 301: 179-186.
22 Dong Q, Wang T, Gan R, et al. Balancing the seesaw: investigation of a separator to grasp polysulfides with diatomic chemisorption[J]. ACS Applied Materials & Interfaces, 2020, 12(18): 20596-20604.
23 Varcoe J R, Atanassov P, Dekel D R, et al. Anion-exchange membranes in electrochemical energy systems[J]. Energy & Environmental Science, 2014, 7(10): 3135-3191.
24 Wang Y J, Qiao J, Baker R, et al. Alkaline polymer electrolyte membranes for fuel cell applications[J]. Chemical Society Reviews, 2013, 42(13): 5768-5787.
25 Yang Y, Wang J, Zheng J, et al. A stable anion exchange membrane based on imidazolium salt for alkaline fuel cell[J]. Journal of Membrane Science, 2014, 467: 48-55.
26 Dai P, Mo Z H, Xu R W, et al. Cross-linked quaternized poly(styrene-b-(ethylene-co-butylene)-b-styrene) for anion exchange membrane: synthesis, characterization and properties[J]. ACS Applied Materials & Interfaces, 2016, 8(31): 20329-20341.
27 Dong X, Lv D, Zheng J, et al. Pyrrolidinium-functionalized poly(arylene ether sulfone)s for anion exchange membranes: using densely concentrated ionic groups and block design to improve membrane performance[J]. Journal of Membrane Science, 2017, 535: 301-311.
28 Hao J, Gao X, Jiang Y, et al. Crosslinked high-performance anion exchange membranes based on poly(styrene-b-(ethylene-co-butylene)-b-styrene)[J]. Journal of Membrane Science, 2018, 551: 66-75.
29 Strasser D J, Graziano B J, Knauss D M. Base stable poly(diallylpiperidinium hydroxide) multiblock copolymers for anion exchange membranes[J]. Journal of Materials Chemistry A, 2017, 5(20): 9627-9640.
30 Wang Z, Li Z, Chen N, et al. Crosslinked poly (2,6-dimethyl-1,4-phenylene oxide) polyelectrolyte enhanced with poly (styrene-b-(ethylene-co-butylene)-b-styrene) for anion exchange membrane applications[J]. Journal of Membrane Science, 2018, 564: 492-500.
31 Zhang K, Gong S, Zhao B, et al. Bent-twisted block copolymer anion exchange membrane with improved conductivity[J]. Journal of Membrane Science, 2018, 550: 59-71.
32 Zhang X, Chen P, Shi Q, et al. Block poly(arylene ether sulfone) copolymers bearing quaterinized aromatic pendants: synthesis, property and stability[J]. International Journal of Hydrogen Energy, 2017, 42(42): 26320-26332.
33 Guo D, Lai A N, Lin C X, et al. Imidazolium-functionalized poly(arylene ether sulfone) anion-exchange membranes densely grafted with flexible side chains for fuel cells[J]. ACS Applied Materials & Interfaces, 2016, 8(38): 25279-25288.
34 Han J, Zhu L, Pan J, et al. Elastic long-chain multication cross-linked anion exchange membranes[J]. Macromolecules, 2017, 50(8): 3323-3332.
35 Jannasch P, Weiber E A. Configuring anion-exchange membranes for high conductivity and alkaline stability by using cationic polymers with tailored side chains[J]. Macromolecular Chemistry and Physics, 2016, 217(10): 1108-1118.
36 Lai A N, Zhuo Y Z, Lin C X, et al. Side-chain-type phenolphthalein-based poly(arylene ether sulfone nitrile)s anion exchange membrane for fuel cells[J]. Journal of Membrane Science, 2016, 502: 94-105.
37 Pan J, Han J, Zhu L, et al. Cationic side-chain attachment to poly(phenylene oxide) backbones for chemically stable and conductive anion exchange membranes[J]. Chemistry of Materials, 2017, 29(12): 5321-5330.
38 Zeng L, Zhao T S. An effective strategy to increase hydroxide-ion conductivity through microphase separation induced by hydrophobic-side chains[J]. Journal of Power Sources, 2016, 303: 354-362.
39 Zhang M, Shan C, Liu L, et al. Facilitating anion transport in polyolefin-based anion exchange membranes via bulky side chains[J]. ACS Applied Materials & Interfaces, 2016, 8(35): 23321-23330.
40 Wang L, Bellini M, Miller H A, et al. A high conductivity ultrathin anion-exchange membrane with 500+ h alkali stability for use in alkaline membrane fuel cells that can achieve 2 W/cm2 at 80℃[J]. Journal of Materials Chemistry A, 2018, 6(31): 15404-15412.
41 Pan J, Chen C, Li Y, et al. Constructing ionic highway in alkaline polymer electrolytes[J]. Energy & Environmental Science, 2014, 7(1): 354-360.
42 Cheng X, Wang J, Liao Y, et al. Enhanced conductivity of anion-exchange membrane by incorporation of quaternized cellulose nanocrystal[J]. ACS Applied Materials & Interfaces, 2018, 10(28): 23774-23782.
43 Wang Y, Wan H, Wang D, et al. Preparation and characterization of a semi-interpenetrating network alkaline anion exchange membrane[J]. Fibers and Polymers, 2018, 19(1): 11-21.
44 Xue J, Liu L, Liao J, et al. Semi-interpenetrating polymer networks by azide-alkyne cycloaddition as novel anion exchange membranes[J]. Journal of Materials Chemistry A, 2018, 6(24): 11317-11326.
45 Chen C, Chen B, Hong R. Preparation and properties of alkaline anion exchange membrane with semi‐interpenetrating polymer networks based on poly (vinylidene fluoride-co-hexafluoropropylene)[J]. Journal of Applied Polymer Science, 2018, 135(5): 45775.
46 Zhang K, Mcdonald M B, Genina I E A, et al. A highly conductive and mechanically robust OH conducting membrane for alkaline water electrolysis[J]. Chemistry of Materials, 2018, 30(18): 6420-6430.
47 Pan J, Zhu L, Han J, et al. Mechanically tough and chemically stable anion exchange membranes from rigid-flexible semi-interpenetrating networks[J]. Chemistry of Materials, 2015, 27(19): 6689-6698.
48 Guo D, Zhuo Y Z, Lai A N, et al. Interpenetrating anion exchange membranes using poly(1-vinylimidazole) as bifunctional crosslinker for fuel cells[J]. Journal of Membrane Science, 2016, 518: 295-304.
49 Zeng L, He Q, Liao Y, et al. Anion exchange membrane based on interpenetrating polymer network with ultrahigh ion conductivity and excellent stability for alkaline fuel cell[J]. Research, 2020, DOI: 10.34133/2020/4794706.
doi: 10.34133/2020/4794706
50 Zhu L, Pan J, Wang Y, et al. Multication side chain anion exchange membranes[J]. Macromolecules, 2016, 49(3): 815-824.
51 Zhu L, Yu X, Hickner M A. Exploring backbone-cation alkyl spacers for multi-cation side chain anion exchange membranes[J]. Journal of Power Sources, 2018, 375: 433-441.
52 Han J, Zhu L, Pan J, et al. Elastic long-chain multication cross-linked anion exchange membranes[J]. Macromolecules, 2017, 50(8): 3323-3332.
53 Yang Y, Fu N, Dong Q, et al. Self‐aggregation to construct hydroxide highways in anion exchange membranes[J]. Advanced Materials Interfaces, 2020, 7(14): 1902143.
54 Cheng X, Wang J, Liao Y, et al. Enhanced conductivity of anion-exchange membrane by incorporation of quaternized cellulose nanocrystal[J]. ACS Applied Materials & Interfaces, 2018, 10(28): 23774-23782.
55 Hao J, Jiang Y, Gao X, et al. Functionalization of polybenzimidazole-crosslinked poly(vinylbenzyl chloride) with two cyclic quaternary ammonium cations for anion exchange membranes[J]. Journal of Membrane Science, 2018, 548: 1-10.
56 Chen D, Hickner M A. Ion clustering in quaternary ammonium functionalized benzylmethyl containing poly(arylene ether ketone)s[J]. Macromolecules, 2013, 46(23): 9270-9278.
57 Gong X, He G, Yan X, et al. Electrospun nanofiber enhanced imidazolium-functionalized polysulfone composite anion exchange membranes[J]. RSC Advances, 2015, 5(115): 95118-95125.
58 Lee W H, Kim Y S, Bae C. Robust hydroxide ion conducting poly(biphenyl alkylene)s for alkaline fuel cell membranes[J]. ACS Macro Letters, 2015, 4(8): 814-818.
59 Wang K, Gao L, Liu J, et al. Comb-shaped ether-free poly (biphenyl indole) based alkaline membrane[J]. Journal of Membrane Science, 2019, 588: 117216.
60 Olsson J S, Pham T H, Jannasch P. Tuning poly (arylene piperidinium) anion-exchange membranes by copolymerization, partial quaternization and crosslinking[J]. Journal of Membrane Science, 2019, 578: 183-195.
61 Hao J, Jiang Y, Gao X, et al. Functionalization of polybenzimidazole-crosslinked poly (vinylbenzyl chloride) with two cyclic quaternary ammonium cations for anion exchange membranes[J]. Journal of Membrane Science, 2018, 548: 1-10.
62 Chu X, Liu L, Huang Y, et al. Practical implementation of bis-six-membered N-cyclic quaternary ammonium cations in advanced anion exchange membranes for fuel cells: synthesis and durability[J]. Journal of Membrane Science, 2019, 578: 239-250.
63 Ren R, Zhang S, Miller H A, et al. Facile preparation of an ether-free anion exchange membrane with pendant cyclic quaternary ammonium groups[J]. ACS Applied Energy Materials, 2019, 2(7): 4576-4581.
64 Wang J, Zhao Y, Setzler B P, et al. Poly (aryl piperidinium) membranes and ionomers for hydroxide exchange membrane fuel cells[J]. Nature Energy, 2019, 4(5): 392-398.
65 Shukla G, Shahi V K. Poly (arylene ether ketone) copolymer grafted with amine groups containing a long alkyl chain by chloroacetylation for improved alkaline stability and conductivity of anion exchange membrane[J]. ACS Applied Energy Materials, 2018, 1(3): 1175-1182.
66 Li S, Zhu X, Liu D, et al. A highly durable long side-chain polybenzimidazole anion exchange membrane for AEMFC[J]. Journal of Membrane Science, 2018, 546: 15-21.
67 Li N, Wang L, Hickner M. Cross-linked comb-shaped anion exchange membranes with high base stability[J]. Chemical Communications, 2014, 50(31): 4092-4095.
[1] Chaoling HAN, Zhenqian CHEN. Effect of active carbon nanoparticles on electrochemical properties of phosphorus-nitrogen double-doped graphene [J]. CIESC Journal, 2020, 71(S1): 448-453.
[2] Yang XIAO, Chunming XU, Xiaoxia YANG, Lihong ZHANG, Wang SUN, Jinshuo QIAO, Zhenhua WANG, Kening SUN. Preparation and electrochemical properties of NiMn2O4 spinel oxide cathode [J]. CIESC Journal, 2020, 71(9): 4292-4302.
[3] Haitao CHEN, Jinshuo QIAO, Zhenhuan WANG, Wang SUN, Haijun LI, Kening SUN. Investigation on preparation and carbon catalytic ability of in-situ bimetallic nanoparticle YST composite anode [J]. CIESC Journal, 2020, 71(9): 4270-4281.
[4] Aiping MU, Dingding YE, Rong CHEN, Xun ZHU, Qiang LIAO. LB simulation of anode mass transfer characteristics in cotton thread-based microfluidic fuel cell [J]. CIESC Journal, 2020, 71(7): 3278-3287.
[5] Qiang ZHAO, Hang GUO, Fang YE, Chongfang MA. State of the art of flow field plates of proton exchange membrane fuel cells [J]. CIESC Journal, 2020, 71(5): 1943-1963.
[6] Shiming XU, Zhiqiang LIU, Xi WU, Youwen ZHANG, Junyong HU, Debing WU, Qiang LENG, Dongxu JIN, Ping WANG. Experimental study on the hydrogen production with RED reactor powered by concentration gradient energy [J]. CIESC Journal, 2020, 71(5): 2283-2291.
[7] Hongbo ZHAO, Jie LIU, Biao MA, Qiang GUO, Xiaohui LIU, Fengwen PAN. Control strategy and simulation research of water-cooled PEMFC thermal management system [J]. CIESC Journal, 2020, 71(5): 2139-2150.
[8] Fangju LI, Wei WU, Shuangfeng WANG. Pore network simulation of transport properties in grooved gas diffusion layer of PEMFC [J]. CIESC Journal, 2020, 71(5): 1976-1985.
[9] Xingqun ZHENG, Li LI, Zidong WEI. Constructing and regulating electrocatalysts: from perspective of mesoscale [J]. CIESC Journal, 2020, 71(10): 4445-4461.
[10] Yao WANG,Yiyun TANG. Advances in single-atom catalysts for oxygen electrodes [J]. CIESC Journal, 2020, 71(10): 4409-4428.
[11] Wenjing ZHANG, Jing LI, Zidong WEI. Strategies for tuning porous structures of air electrode in fuel cells [J]. CIESC Journal, 2020, 71(10): 4553-4574.
[12] Yu CHEN, Tiancheng MU. Application of deep eutectic solvents in battery and electrocatalysis [J]. CIESC Journal, 2020, 71(1): 106-121.
[13] Xiao LUO, Hang GUO, Fang YE, Chongfang MA. Experiment of thin film thermal sensor based on vacuum coating technology [J]. CIESC Journal, 2019, 70(S2): 123-129.
[14] Lin WEI, Zihao LIAO, Fangming JIANG. Numerical study on cold start of PEMFC with coolant circulation [J]. CIESC Journal, 2019, 70(S2): 146-154.
[15] Wenwen CHEN,Zhongliang LIU,Kejun JIANG,Junxian HOU,Xiaoge LOU,Yanxia LI,Qiang LIAO,Xun ZHU. Study of wastewater containing sodium citrate degraded by microbial fuel cell [J]. CIESC Journal, 2019, 70(S2): 322-328.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Abaji Gaikwad. Transport of Indium, Gallium and Thallium Metal Ions Through Chromatographic Fiber Supported Solid Membrane in Acetylacetone Containing Mixed Solvents[J]. , 2011, 19(6): 955 -963 .
[2]

YANG Qing; PENG Yongzhen;WANG Shuying;YANG Anming;LI Lingyun

.

Achieving and stabilizing short-cut nitrogen removal at low temperature in pilot-scale SBR

[J]. , 2007, 58(11): 2901 -2905 .
[3] Chen Yun Zhang Zhuyong and Zhu Zhenghua(Rese ach Institute of Fine Chemicals, East China Institute of Chemical Technology, Shanghai). A Study of the Influences of Inorganic Electrolyte on the Stability and the Electrokinetic Properties of the Aqueous Dispersions of Organic Dye[J]. , 1989, 40(5): 613 -618 .
[4] CHEN Guangwen, YUAN Quan. MICRO-CHEMICAL TECHNOLOGY[J]. CIESC Journal, 2003, 54(4): 427 -439 .
[5] Chen Shouyu Chen Xiaobing (Dalian University of Technology,Dalian 116024) (Dalian Oil and Fat Chemical Plant, Dalian 116001). Theoretical Model of Fuzzy Pattern Recognition and its Application in Chemical Engineering[J]. , 1991, 42(6): 660 -668 .
[6] Yang Maying, Wang Shuqing and Wang Jicheng(State Key Lab of Industrial Control Technology, Zhejiang University, Hangzhou 310027). ADVANCED CONTROL STRATEGY FOR FCCU REACTOR-REGENERATOR[J]. , 1997, 48(4): 431 -436 .
[7] REN Nanqi, ZHOU Xianjiao, GUO Wanqian, YANG Shanshan. A review on treatment methods of dye wastewater[J]. CIESC Journal, 2013, 64(1): 84 -94 .
[8] LIU Chao, XU Jinliang. A novel heat recovery system for flue gas from natural gas boiler[J]. , 2013, 64(11): 4223 -4230 .
[9] LUO Qin, ZHAO Yinfeng, YE Mao, LIU Zhongmin. Application of electrical capacitance tomography for gas-solid fluidized bed measurement[J]. CIESC Journal, 2014, 65(7): 2504 -2512 .
[10] CHEN Lei, CHEN Hanping, LU Qiang, SONG Yang, DING Xuejie, WANG Xianhua, YANG Haiping. Characterization of structure and pyrolysis behavior of lignin[J]. CIESC Journal, 2014, 65(9): 3626 -3633 .