CIESC Journal ›› 2020, Vol. 71 ›› Issue (10): 4575-4589.doi: 10.11949/0438-1157.20200757

• Reviews and monographs • Previous Articles     Next Articles

Research advances in thermally coupled intensification technology for special distillation

Shirui SUN(),Ao YANG,Tao SHI,Weifeng SHEN()   

  1. Scohool of Chemistry and Chemical Engineering, National-municipal Joint Engineering Laboratory for Chemical Process Intensification and Reaction, Chongqing University,Chongqing 401331, China
  • Received:2020-06-16 Revised:2020-09-02 Online:2020-10-05 Published:2020-10-12
  • Contact: Weifeng SHEN;


In the production and separation process of petroleum, medicine, chemical industry and other industries, it is often accompanied by the production of azeotropic or similar boiling point mixtures. Its high-efficiency and energy-saving separation is a prerequisite for industrial clean production and sustainable development. Special distillation as an effective separation method attracts substantial attention from researchers. However, special distillation is a process with high-energy consumption. Therefore, the development of intensification technology for special distillation with low costs and reliable performance is of great significance for the economy and energy sustainable development. According to the heat and mass transfer laws of special distillation, this work introduces the research advances of thermally coupled distillation, dividing wall column, side-stream distillation, organic Rankine cycle, heat pump and different pressure thermally coupled technologies in energy saving special distillation process from the intensification principles and retrofitting technologies. In addition, this work outlines the challenge and opportunity of intensification technology to provide references of the theoretical research and application to special distillation.

Key words: azeotrope, distillation, thermally coupling, process intensification, energy saving, separation

CLC Number: 

  • TQ 028.3


Thermally coupled technology"


The design procedure of double-thermal coupled ternary extractive distillation"


The configuration of dividing wall column"


The conceptual design of extractive dividing wall column-decanter process[47]"


The side-stream distillation process"


The design procedure of side-stream extractive distillation"


Heat pump distillation"


The design procedure of self-heat azeotropic dividing wall column[76]"


Flowsheet of organic Rankine cycle(a). Thermodynamic process of organic Rankine cycle (b)"


The organic Rankine cycle coupled with heat pump-reactive dividing wall column[93]"


The different pressure thermally coupled technique"


The different pressure thermally coupled reactive dividing wall distillation[101]"

1 黄旭, 罗祎青, 袁希钢. 带共沸的乙醇/乙酸乙酯/2-丁酮三元物系变压精馏分离过程及其参数优化 [J]. 化工学报, 2018, 69(5): 2089-2099.
Huang X, Luo Y Q, Yuan X G. Separation of C2H5OH/C4H8O2-3/C4H8O-3 ternary mixture with azeotropes by pressure swing distillation and its parameter optimization[J]. CIESC Journal, 2018, 69(5): 2089-2099.
2 Liang S, Cao Y, Liu X, et al. Insight into pressure-swing distillation from azeotropic phenomenon to dynamic control [J]. Chemical Engineering Research and Design, 2017, 117: 318-335.
3 Sun S, Lü L, Yang A, et al. Extractive distillation: advances in conceptual design, solvent selection, and separation strategies [J]. Chinese Journal of Chemical Engineering, 2019, 27(6): 1247-1256.
4 Hu Y, Li F, Wei S, et al. Design and optimization of the efficient extractive distillation process for separating the binary azeotropic mixture methanol-acetone based on the quantum chemistry and conceptual design [J]. Separation and Purification Technology, 2020, 242: 116829.
5 Yang A, Zou H, Chien I L, et al. Optimal design and effective control of triple-column extractive distillation for separating ethyl acetate/ethanol/water with multiazeotrope [J]. Industrial & Engineering Chemistry Research, 2019, 58(17): 7265-7283.
6 Shen W F, Benyounes H, Song J. A review of ternary azeotropic mixtures advanced separation strategies [J]. Theoretical Foundations of Chemical Engineering, 2016, 50(1): 28-40.
7 Yang A, Shen W, Wei S, et al. Design and control of pressure-swing distillation for separating ternary systems with three binary minimum azeotropes [J]. AIChE Journal, 2019, 65(4): 1281-1293.
8 Yang A, Lv L, Shen W, et al. Optimal design and effective control of the tert-amyl methyl ether production process using an integrated reactive dividing wall and pressure swing columns [J]. Industrial & Engineering Chemistry Research, 2017, 56(49): 14565-14581.
9 Kiss A A, Jobson M, Gao X. Reactive distillation: stepping up to the next level of process intensification [J]. Industrial & Engineering Chemistry Research, 2019, 58(15): 5909-5918.
10 孙宏伟, 陈建峰. 我国化工过程强化技术理论与应用研究进展 [J]. 化工进展, 2011, 30(1): 1-15.
Sun H W, Chen J F. Advances in fundamental study and application of chemical process intensification technology in China [J]. Chemical Industry and Engineering Progress, 2011, 30(1): 1-15.
11 任海伦, 安登超, 朱桃月, 等 精馏技术研究进展与工业应用 [J]. 化工进展, 2016, 35(6): 1606-1626.
Ren H L, An D C, Zhu T Y, et al. Distillation technology research progress and industrial application [J]. Chemical Industry and Engineering Progress, 2016, 35(6): 1606-1626.
12 Shen W, Benyounes H, Gerbaud V. Extractive distillation: recent advances in operation strategies [J]. Reviews in Chemical Engineering, 2015, 31(1): 13-26.
13 张志炳, 田洪舟, 张锋, 等. 多相反应体系的微界面强化简述 [J]. 化工学报, 2018, 69(1): 44-49.
Zhang Z B, Tian H Z, Zhang F, et al. Overview of microinterface intensification in multiphase reaction systems [J]. CIESC Journal, 2018, 69(1): 44-49.
14 Kiss A A. Distillation technology—still young and full of breakthrough opportunities [J]. Journal of Chemical Technology & Biotechnology, 2014, 89(4): 479-498.
15 Shen W, Dong L, Wei S, et al. Systematic design of an extractive distillation for maximum-boiling azeotropes with heavy entrainers [J]. AIChE Journal, 2015, 61(11): 3898-3910.
16 高鑫, 赵悦, 李洪, 等. 反应精馏过程耦合强化技术基础与应用研究述评 [J]. 化工学报, 2018, 69(1): 218-238.
Gao X, Zhao Y, Li H, et al. Review of basic and application investigation of reactive distillation technology for process intensification [J]. CIESC Journal, 2018, 69(1): 218-238.
17 Han J, Lei Z, Dong Y, et al. Process intensification on the separation of benzene and thiophene by extractive distillation [J]. AIChE Journal, 2015, 61(12): 4470-4480.
18 Le Q-K, Halvorsen I J, Pajalic O, et al. Dividing wall columns for heterogeneous azeotropic distillation [J]. Chemical Engineering Research and Design, 2015, 99: 111-119.
19 Yang A, Sun S, Shi T, et al. Energy-efficient extractive pressure-swing distillation for separating binary minimum azeotropic mixture dimethyl carbonate and ethanol [J]. Separation and Purification Technology, 2019, 229: 115817.
20 Shi T, Yang A, Jin S, et al. Comparative optimal design and control of two alternative approaches for separating heterogeneous mixtures isopropyl alcohol-isopropyl acetate-water with four azeotropes [J]. Separation and Purification Technology, 2019, 225: 1-17.
21 Caballero J A, Grossmann I E. Thermodynamically equivalent configurations for thermally coupled distillation [J]. AIChE Journal, 2003, 49(11): 2864-2884.
22 Flores O A, Cárdenas J C, Hernández S, et al. Thermodynamic analysis of thermally coupled distillation sequences [J]. Industrial & Engineering Chemistry Research, 2003, 42(23): 5940-5945.
23 孙宗伟. 热耦合精馏的适应性及其热力学效率 [D]. 大连: 大连理工大学, 2008.
Sun Z W. Adaptability and thermodynamic efficiency of thermally coupled distillation [D]. Dalian: Dalian University of Technology, 2008.
24 余爱平. 完全热耦合精馏塔及其节能效果的模拟研究 [D]. 天津: 天津大学, 2010.
Yu A P. Simulation study on complete thermally coupled distillation column and its energy saving effect [D]. Tianjin: Tianjin University, 2010.
25 史志刚. 分隔塔型热耦合精馏技术研究 [D] . 大连: 大连理工大学, 2009.
Shi Z G. Thermally coupled distillation of divided wall column research [D] . Dalian: Dalian University of Technology, 2009.
26 Nguyen N, Demirel Y. Using thermally coupled reactive distillation columns in biodiesel production [J]. Energy, 2011, 36(8): 4838-4847.
27 Wang S J, Wong D S H, Yu S W. Design and control of transesterification reactive distillation with thermal coupling [J]. Computers & Chemical Engineering, 2008, 32(12): 3030-3037.
28 Lee H Y, Chen C Y, Chen J L, et al. Design and control of diphenyl carbonate reactive distillation process with thermally coupled and heat-integrated stages configuration [J]. Computers & Chemical Engineering, 2018, 121: 130-147.
29 van Duc Long N, Lee M. Optimal retrofit design of extractive distillation to energy efficient thermally coupled distillation scheme [J]. AIChE Journal, 2013, 59(4): 1175-1182.
30 Wang S J, Yu C C, Huang H P. Plant-wide design and control of DMC synthesis process via reactive distillation and thermally coupled extractive distillation [J]. Computers & Chemical Engineering, 2010, 34(3): 361-373.
31 Zhao Y, Ma K, Bai W, et al. Energy-saving thermally coupled ternary extractive distillation process by combining with mixed entrainer for separating ternary mixture containing bioethanol [J]. Energy, 2018, 148: 296-308.
32 Timoshenko A V, Anokhina E A, Morgunov A V, et al. Application of the partially thermally coupled distillation flowsheets for the extractive distillation of ternary azeotropic mixtures [J]. Chemical Engineering Research and Design, 2015, 104: 139-155.
33 Luyben W L. Control comparison of conventional and thermally coupled ternary extractive distillation processes [J]. Chemical Engineering Research and Design, 2016, 106: 253-262.
34 Yang A, Su Y, Chien I L, et al. Investigation of an energy-saving double-thermally coupled extractive distillation for separating ternary system benzene/toluene/cyclohexane [J]. Energy, 2019, 186: 115756.
35 Su Y, Jin S, Zhang X, et al. Stakeholder-oriented multi-objective process optimization based on an improved genetic algorithm [J]. Computers & Chemical Engineering, 2020, 132: 106618.
36 Ling H, Qiu J, Hua T, et al. Remixing analysis of four-product dividing-wall columns [J]. Chemical Engineering & Technology, 2018, 41(7): 1359-1367.
37 吴宁. 隔离壁精馏塔的双温差控制 [D]. 北京: 北京化工大学, 2013.
Wu N. Application of double temperature difference control scheme(DTDC) for the dlviding-wall distillation columns [D]. Beijing: Beijing University of Chemical Technology, 2013.
38 Kiss A A, Rewagad R R. Energy efficient control of a BTX dividing-wall column [J]. Computers & Chemical Engineering, 2011, 35(12): 2896-2904.
39 Asprion N, Kaibel G. Dividing wall columns: fundamentals and recent advances [J]. Chemical Engineering and Processing- Process Intensification, 2010, 49(2): 139-146.
40 Premkumar R, Rangaiah G P. Retrofitting conventional column systems to dividing-wall columns [J]. Chemical Engineering Research and Design, 2009, 87(1): 47-60.
41 Long H, Clark J, Benyounes H, et al. Optimal design and economic evaluation of dividing-wall columns [J]. Chemical Engineering & Technology, 2016, 39(6): 1077-1086.
42 Bravo-Bravo C, Segovia-Hernández J G, Gutiérrez-Antonio C, et al. Extractive dividing wall column: design and optimization [J]. Industrial & Engineering Chemistry Research, 2010, 49(8): 3672-3688.
43 Ö Yildirim, Kiss A A, Kenig E Y. Dividing wall columns in chemical process industry: a review on current activities [J]. Separation and Purification Technology, 2011, 80(3): 403-417.
44 Sánchez-Ramírez E, Quiroz-Ramírez J J, Hernández S, et al. Optimal hybrid separations for intensified downstream processing of biobutanol [J]. Separation and Purification Technology, 2017, 185: 149-159.
45 Kiss A A, Ignat R M. Innovative single step bioethanol dehydration in an extractive dividing-wall column [J]. Separation and Purification Technology, 2012, 98: 290-297.
46 Tututi-Avila S, Jiménez-Gutiérrez A, Hahn J. Control analysis of an extractive dividing-wall column used for ethanol dehydration [J]. Chemical Engineering and Processing-Process Intensification, 2014, 82: 88-100.
47 Yang A, Wei R, Sun S, et al. Energy-saving optimal design and effective control of heat integration-extractive dividing wall column for separating heterogeneous mixture methanol/toluene/water with multiazeotropes [J]. Industrial & Engineering Chemistry Research, 2018, 57(23): 8036-8056.
48 陈梦琪, 于娜, 刘育良, 等. 反应精馏隔壁塔生产乙酸正丁酯的优化与控制 [J]. 化工学报, 2016, 67(12): 5066-5081.
Chen M Q, Yu N, Liu Y L, et al. Optimization and control of reactive dividing wall column for production of n-butylacetate [J]. CIESC Journal, 2016, 67(12): 5066-5081.
49 凌笑媚, 郑伟跃, 王晓达, 等. 隔壁反应精馏技术进展 [J]. 化工进展, 2017, 36(8): 2776-2786.
Ling X M, Zheng W Y, Wang X D, et al. Advances in technology of reactive dividing wall column [J]. Chemical Industry and Engineering Progress, 2017, 36(8): 2776-2786.
50 孙兰义, 王汝军, 张月明, 等. 反应精馏隔壁塔应用于酯转换过程的研究 [J]. 化学反应工程与工艺, 2010, 26(5): 418-423.
Sun L Y, Wang R J, Zhang Y M, et al. Study on application of reactive distillation partition tower in ester conversion process [J]. Chemieal Reaetion Engineering and Technology, 2010, 26(5): 418-423.
51 Kiss A A, Suszwalak D J P C. Innovative dimethyl ether synthesis in a reactive dividing-wall column [J]. Computers & Chemical Engineering, 2012, 38: 74-81.
52 Ehlers C, Egger T, Fieg G. Experimental operation of a reactive dividing wall column and comparison with simulation results [J]. AIChE Journal, 2017, 63(3): 1036-1050.
53 Egger T, Fieg G. Dynamic process behavior and model validation of reactive dividing wall columns [J]. Chemical Engineering Science, 2018, 179: 284-295.
54 Qian X, Jia S, Luo Y, et al. Control of reactive dividing wall column for selective hydrogenation and separation of C3 stream [J]. Chinese Journal of Chemical Engineering, 2016, 24(9): 1213-1228.
55 顾克, 陈海胜, 苑杨, 等. 一种新型双隔壁反应精馏塔及其性能 [J]. 现代化工, 2019, 39(11): 202-206.
Gu K, Chen H S, Yuan Y, et al. A novel double dividing-wall reactive distillation column and its behaviors [J]. Modern Chemical Industry, 2019, 39(11): 202-206.
56 Wu Y C, Lee H-Y, Huang H-P, et al. Energy-saving dividing-wall column design and control for heterogeneous azeotropic distillation systems [J]. Industrial & Engineering Chemistry Research, 2014, 53(4): 1537-1552.
57 Yu H, Ye Q, Xu H, et al. Design and control of dividing-wall column for tert-butanol dehydration system via heterogeneous azeotropic distillation [J]. Industrial & Engineering Chemistry Research, 2015, 54(13): 3384-3397.
58 刘立新, 陈梦琪, 刘育良, 等. 共沸精馏隔壁塔与萃取精馏隔壁塔的控制研究 [J]. 化工进展, 2017, 36(2): 756-765.
Liu L X, Chen M Q, Liu Y L, et al. Control of azeotropic dividing wall column and extractive dividing wall column [J]. Chemical Industry and Engineering Progress, 2017, 36(2): 756-765.
59 Gutiérrez-Antonio C, Jiménez-Gutiérrez A. Design of side-stream azeotropic distillation columns [J]. Chemical Engineering Research and Design, 2007, 85(10): 1384-1389.
60 Cui C, Zhang X, Sun J. Design and optimization of energy-efficient liquid-only side-stream distillation configurations using a stochastic algorithm [J]. Chemical Engineering Research and Design, 2019, 145: 48-52.
61 Wang Y, Ma K, Yu M, et al. An improvement scheme for pressure-swing distillation with and without heat integration through an intermediate connection to achieve energy savings [J]. Computers & Chemical Engineering, 2018, 119: 439-449.
62 Chen Y, Liu C, Geng Z. Design and control of fully heat-integrated pressure swing distillation with a side withdrawal for separating the methanol/methyl acetate/acetaldehyde ternary mixture [J]. Chemical Engineering and Processing - Process Intensification, 2018, 123: 233-248.
63 Chen H, Huang K, Liu W, et al. Enhancing mass and energy integration by external recycle in reactive distillation columns [J]. AIChE Journal, 2013, 59(6): 2015-2032.
64 Huang K, Chen H, Zhang L, et al. Effective arrangement of an external recycle in reactive distillation columns [J]. Industrial & Engineering Chemistry Research, 2014, 53(5): 1986-1998.
65 Gao X, Li X, Li H. Hydrolysis of methyl acetate via catalytic distillation: simulation and design of new technological process [J]. Chemical Engineering and Processing-Process Intensification, 2010, 49(12): 1267-1276.
66 Tututi-Avila S, Medina-Herrera N, Hahn J, et al. Design of an energy-efficient side-stream extractive distillation system [J]. Computers & Chemical Engineering, 2017, 102: 17-25.
67 Shi T, Chun W, Yang A, et al. Optimization and control of energy saving side-stream extractive distillation with heat integration for separating ethyl acetate-ethanol azeotrope [J]. Chemical Engineering Science, 2020, 215: 115373.
68 Wang C, Guang C, Cui Y, et al. Compared novel thermally coupled extractive distillation sequences for separating multi-azeotropic mixture of acetonitrile/benzene/methanol [J]. Chemical Engineering Research and Design, 2018, 136: 513-528.
69 Yang A, Chun W, Sun S, et al. Dynamic study in enhancing the controllability of an energy-efficient double side-stream ternary extractive distillation of acetonitrile/methanol/benzene with three azeotropes [J]. Separation and Purification Technology, 2020, 242: 116830.
70 Cui Y, Zhang Z, Shi X, et al. Triple-column side-stream extractive distillation optimization via simulated annealing for the benzene/isopropanol/water separation [J]. Separation and Purification Technology, 2020, 236: 116303.
71 Díez E, Langston P, Ovejero G, et al. Economic feasibility of heat pumps in distillation to reduce energy use [J]. Applied Thermal Engineering, 2009, 29(5/6): 1216-1223.
72 Kiss A A, Flores L S J, Infante F C A. Towards energy efficient distillation technologies—making the right choice [J]. Energy, 2012, 47(1): 531-542.
73 Zhang Q, Yang S, Shi P, et al. Economically and thermodynamically efficient heat pump-assisted side-stream pressure-swing distillation arrangement for separating a maximum-boiling azeotrope [J]. Applied Thermal Engineering, 2020, 173: 115228.
74 吕新宇, 赵磊, 汪文丞, 等. 热泵自夹带共沸精馏分离乙醇-甲苯-水三元共沸混合物 [J]. 常州大学学报(自然科学版), 2017, 29(6): 26-31.
Lyu X Y, Zhao L, Wang W C, et al. Heat-pump azeotropic distillation for ternary azeotrope ethanol-toluene water separation [J]. Journal of Changzhou University(Natural Science Edition), 2017, 29(6): 26-31.
75 Chen J, Ye Q, Liu T, et al. Improving the performance of heterogeneous azeotropic distillation via self-heat recuperation technology [J]. Chemical Engineering Research and Design, 2019, 141: 516-528.
76 Yang A, Jin S, Shen W, et al. Investigation of energy-saving azeotropic dividing wall column to achieve cleaner production via heat exchanger network and heat pump technique [J]. Journal of Cleaner Production, 2019, 234: 410-422.
77 袁俊, 杨建明, 赵锋伟, 等. 热泵变压精馏分离乙二胺水溶液的模拟 [J]. 化学工程, 2015, 43(4): 75-78.
Yuan J, Yang J M, Zhao F W, et al. Simulation on separation of ethylenediamine and water by heat-pump pressure swing distillation [J]. Chemical Engineering(China), 2015, 43(4): 75-78.
78 Luyben W L. Design and control of a pressure-swing distillation process with vapor recompression [J]. Chemical Engineering and Processing - Process Intensification, 2018, 123: 174-184.
79 Zhang Q, Liu M, Zeng A. Performance enhancement of pressure-swing distillation process by the combined use of vapor recompression and thermal integration [J]. Computers & Chemical Engineering, 2018, 120: 30-45.
80 You X, Rodriguez-Donis I, Gerbaud V. Reducing process cost and CO2 emissions for extractive distillation by double-effect heat integration and mechanical heat pump [J]. Applied Energy, 2016, 166: 128-140.
81 Zhang Q, Shi P, Zeng A, et al. Dynamic control analysis of intensified extractive distillation process with vapor recompression [J]. Separation and Purification Technology, 2020, 233: 116016.
82 Patraşcu I, Bildea C S, Kiss A A. Dynamics and control of a heat pump assisted extractive dividing-wall column for bioethanol dehydration [J]. Chemical Engineering Research and Design, 2017, 119: 66-74.
83 Quoilin S, Broek M V D, Declaye S, et al. Techno-economic survey of Organic Rankine Cycle(ORC) systems [J]. Renewable and Sustainable Energy Reviews, 2013, 22: 168-186.
84 Lecompte S, Huisseune H, van den Broek M, et al. Review of organic Rankine cycle(ORC) architectures for waste heat recovery [J]. Renewable and Sustainable Energy Reviews, 2015, 47: 448-461.
85 Wang E H, Zhang H G, Fan B Y, et al. Study of working fluid selection of organic Rankine cycle(ORC) for engine waste heat recovery [J]. Energy, 2011, 36(5): 3406-3418.
86 Yan C, Yang A, Chien I L, et al. Advanced exergy analysis of organic Rankine cycles for Fischer-Tropsch syngas production with parallel dry and steam methane reforming [J]. Energy Conversion and Management, 2019, 199: 111963.
87 Zhang X, Wu L, Wang X, et al. Comparative study of waste heat steam SRC, ORC and S-ORC power generation systems in medium-low temperature [J]. Applied Thermal Engineering, 2016, 106: 1427-1439.
88 杨德明, 顾强, 朱碧云, 等. 基于有机朗肯循环的混合二甲苯MVR热泵精馏工艺 [J]. 化工学报, 2017, 68(12): 4641-4648.
Yang D M, Gu Q, Zhu B Y, et al. MVR heat pump distillation process of mixed xylene based on organic Rankine cycle [J]. CIESC Journal, 2017, 68(12): 4641-4648.
89 Gao X, Gu Q, Ma J, et al. MVR heat pump distillation coupled with ORC process for separating a benzene-toluene mixture [J]. Energy, 2018, 143: 658-665.
90 杨德明, 朱碧云, 顾强, 等. 基于机械蒸汽再压缩和有机朗肯循环技术的双溶剂协同萃取精馏分离乙酸甲酯-甲醇-水节能工艺 [J]. 化工进展, 2018, 37(5): 2010-2015.
Yang D M, Zhu B Y, Gu Q, et al. Double solvent synergistic extractive distillation for methyl acetate-methanol-water based on MVR and ORC technology [J]. Chemical Industry and Engineering Progress, 2018, 37(5): 2010-2015.
91 Hipólito-Valencia B J, Vázquez-Ojeda M, Segovia-Hernández J G, et al. Waste heat recovery through organic Rankine cycles in the bioethanol separation process [J]. Industrial & Engineering Chemistry Research, 2014, 53(16): 6773-6788.
92 Li X, Cui C, Li H, et al. Process synthesis and simultaneous optimization of extractive distillation system integrated with organic Rankine cycle and economizer for waste heat recovery [J]. Journal of the Taiwan Institute of Chemical Engineers, 2019, 102: 61-72.
93 Yang A, Su Y, Shen W, et al. Multi-objective optimization of organic Rankine cycle system for the waste heat recovery in the heat pump assisted reactive dividing wall column [J]. Energy Conversion and Management, 2019, 199: 112041.
94 张吕鸿, 刘建宾, 高鑫, 等. 差压热耦合精馏分离甲基环戊烷/苯过程的动态性能研究 [J]. 现代化工, 2012, 32(11): 97-102.
Zhang L H, Liu J B, Gao X, et al. Study on dynamic characteristics of pressure-swing thermally coupled distillation in separation of methyl-cyclopentane / benzene mixture [J]. Modern Chemical Industry, 2012, 32(11): 97-102.
95 李洪, 李鑫钢, 罗铭芳. 差压热耦合蒸馏节能技术 [J]. 化工进展, 2008, (7): 1125-1128.
Li H, Li X G, Luo M F. Different pressure thermally coupled distillation technology for energy saving [J]. Chemical Industry and Engineering Progress, 2008, (7): 1125-1128.
96 杨德明, 廖巧, 王杨. 差压热耦合精馏回收处理含二甲基乙酰胺废水的工艺研究 [J]. 现代化工, 2010, 30(9): 65-67.
Yang D M, Liao Q, Wang Y. Process research on treatment of wastewater containing DMAC by differential pressure thermally coupled distillation [J]. Modern Chemical Industry, 2010, 30(9): 65-67.
97 赵天龙. 基于反应精馏的乙酸异丙酯合成过程设计、节能与控制研究 [D].青岛: 中国石油大学(华东), 2018.
Zhao T L. Design, Energy saving and control strategy research on synthesis of isopropyl acetate based on reactive distillation [D].Qingdao: China University of Petroleum, 2018.
98 Gao X, Wang F, Li H, et al. Heat-integrated reactive distillation process for TAME synthesis [J]. Separation and Purification Technology, 2014, 132: 468-478.
99 Li L, Sun L, Wang J, et al. Design and control of different pressure thermally coupled reactive distillation for methyl acetate hydrolysis [J]. Industrial & Engineering Chemistry Research, 2015, 54(49): 12342-12353.
100 Sun S, Yang A, Chien I L, et al. Intensification and performance assessment for synthesis of 2-methoxy-2-methyl-heptane through the combined use of different pressure thermally coupled reactive distillation and heat integration technique [J]. Chemical Engineering and Processing - Process Intensification, 2019, 142: 107561.
101 Yang A, Sun S, Eslamimanesh A, et al. Energy-saving investigation for diethyl carbonate synthesis through the reactive dividing wall column combining the vapor recompression heat pump or different pressure thermally coupled technique [J]. Energy, 2019, 172: 320-332.
[1] Bowen LIU, Shuai DENG, Shuangjun LI, Li ZHAO, Zhenyu DU, Lijin CHEN. Experimental investigation on energy-efficiency performance of temperature swing adsorption system for CO2 capture [J]. CIESC Journal, 2020, 71(S1): 382-390.
[2] Guoyu WEN, Wei WANG, Rui XIE, Xiaojie JU, Zhuang LIU, Liangyin CHU. Recent progress of hydrogel materials in the field of enrichment and separation of metal ions [J]. CIESC Journal, 2020, 71(9): 3866-3875.
[3] Long TIAN, Ting LIU, Kening SUN. Research progress of graphene oxide membrane for water purification [J]. CIESC Journal, 2020, 71(9): 4112-4130.
[4] Puxu LIU, Chaohui HE, Libo LI, Jinping LI. Stable mixed metal-organic framework for efficient C2H6/C2H4 separation [J]. CIESC Journal, 2020, 71(9): 4211-4218.
[5] Zhikang LI, Luwei SHANG, Miaomiao NIE, Wensheng DENG, Jing TAN. Extraction of formic acid with G/O/W microdispersion system [J]. CIESC Journal, 2020, 71(9): 4219-4227.
[6] Xiaobin JIANG, Guoxin SUN, Gaohong HE. Research progress of high-efficiency membrane distillation crystallization process [J]. CIESC Journal, 2020, 71(9): 3905-3918.
[7] Yi GAO, Yahui CAO, Jieping FAN. Study on crystallization separation of ursolic acid and oleanolic acid in ionic liquid [J]. CIESC Journal, 2020, 71(8): 3633-3643.
[8] Shanhong MA, Feng YE, Yanhong WANG, Xuemei LANG, Shuanshi FAN, Gang LI. Permeation properties and regeneration of a ZSM-5 zeolite membrane for bio-oil dehydration [J]. CIESC Journal, 2020, 71(7): 3345-3353.
[9] Yuanyuan CAI,Baitao GUO,Weihong XING,Congjie GAO. Progress research on development of membrane technology and materials for health industry [J]. CIESC Journal, 2020, 71(7): 2921-2932.
[10] Yajie WANG,Lei LI,Qian ZHANG,Qian LI,Wangliang LI. Progress of magnetically responsive membranes [J]. CIESC Journal, 2020, 71(7): 2933-2944.
[11] Chong YANG, Xufeng LIN, Jinfeng ZHANG, Hong CHEN, Yepeng XIAO, Hui WANG, Lihua CHENG, Xinping OUYANG. Measurement and correlation of liquid-liquid equilibrium data for n-hexane- isopropanol azeotropic system [J]. CIESC Journal, 2020, 71(7): 3009-3017.
[12] Erfu HUO, Yingchun LI, Shuai YANG, Ming FENG, Weiqin CHENG, Bonan WANG, Xinjun WEI. Study on separation process of dicyclohexyl ether by catalytic hydrogenation from cyclohexanol distillation residue [J]. CIESC Journal, 2020, 71(7): 3132-3139.
[13] Hui YANG, Wenhao DAI, Rongxiu LU, Jianyong ZHU. Simulation of rare earth extraction process based on separation coefficient correction [J]. CIESC Journal, 2020, 71(7): 3180-3190.
[14] Yize WANG, Dewu WANG, Deyin HOU, Guangyu AN, Min TANG, Jun WANG. Hydrophilic-hydrophobic CuBTC/PVDF composite membrane applied to membrane distillation anti-oil experiment [J]. CIESC Journal, 2020, 71(6): 2811-2820.
[15] Yun ZHAO, Zhonghua XIANG. Progress of microfluidic synthesis of metal/covalent organic frameworks [J]. CIESC Journal, 2020, 71(6): 2547-2563.
Full text



[1] HAN Jin, ZHU Tong, IMAI Tsuyoshi, XIE Liyang, XU Chenghai, NOZAKI Tsutomu. Solubilization of excess sludge by high speed rotary disk[J]. CIESC Journal, 2008, 59(2): 478 -483 .
[2] WANG Xiaolian, WANG Shuying, PENG Yongzhen. Effects of feed water C/P ratio on performance of anaerobic-anoxic-oxic process[J]. CIESC Journal, 2005, 56(9): 1765 -1770 .
[3] LUO Xionglin, BAI Yujie, HOU Benquan, SUN Lin. Optimal design of bypass location on heat exchanger networks based on relative gain array analysis[J]. CIESC Journal, 2011, 62(5): 1318 -1325 .
[4] Gu Peiyun, Sun Jianzhong, Pan Qinmin and Qian Wei (Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027). CHARACTERISTICS OF MICROMIXING IN BATCH STIRRED TANK REACTOR[J]. , 1994, 45(1): 106 -111 .
[5] TANG Zhijie, TANG Zhaohui, ZHU Hongqiu. A multi-model fusion soft sensor modeling method[J]. CIESC Journal, 2011, 62(8): 2248 -2252 .
[6] ZHU Yu;LU Xiaohua;DING Hao;WANG Jun;WANG Yanru;SHI Jun.


[J]. , 2004, 55(8): 1213 -1223 .
[7] WANG Julin, XU Chunchun. CHEMICAL BEHAVIOR OF BRONZE LOCALIZED CORROSION IN SOIL[J]. CIESC Journal, 2004, 55(7): 1135 -1139 .
[8] . [J]. CIESC Journal, 2011, 62(10): 2726 -2732 .
[9] LIU Bingyan, LIU Peiyuan, WANG Guoping, LIN Jinqing. Measurement and correlation of liquid-liquid equilibrium data for ionic liquid-based aqueous two-phase system of[Bmim]BF4-H2O-Na2CO3[J]. CIESC Journal, 2007, 58(8): 1885 -1890 .
[10] Ma Youguang;Wang Xiaohong;Yu Guocong;Guo Guangping(Chemical Engineering Research Center,Tianjin University,Tianjin 300072). STUDY OF NEAR-INTERFACIAL CONCENTRATION FIELD OF SINGLE MOVING BUBBLE[J]. , 1998, 49(6): 715 -720 .