CIESC Journal ›› 2020, Vol. 71 ›› Issue (10): 4553-4574.doi: 10.11949/0438-1157.20200750

• Reviews and monographs • Previous Articles     Next Articles

Strategies for tuning porous structures of air electrode in fuel cells

Wenjing ZHANG(),Jing LI(),Zidong WEI   

  1. School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
  • Received:2020-06-15 Revised:2020-07-22 Online:2020-10-05 Published:2020-08-10
  • Contact: Jing LI;


A fuel cell is a device that converts chemical energy into electrical energy. The design of the catalytic layer of the air electrode must not only include abundant and easily accessible reactive sites, but also have highly connected electrons, protons, and reactant and product mass transfer channels.Thus the electrodes should hold specific three-dimensional geometrical structures and well-arranged functional channels to ensure accessibility of the active sites and continuous electrochemical reaction. Recently, a range of strategies have been reported to construct various porous structures for electrocatalysts of oxygen reduction reaction, including templating method, high temperature induced phase transition method, combined templating and phase transition method, and the pore-making method based on metal-organic-framework materials. The latest progresses in this field are reviewed in this article.

Key words: fuel cells, air electrode, oxygen reduction reaction, porous structure

CLC Number: 

  • TO 646.5
1 Borup R, Meyers J, Pivovar B, et al. Scientific aspects of polymer electrolyte fuel cell durability and degradation[J]. Chem. Rev., 2007, 107(10): 3904-3951.
2 Banham D, Ye S, Pei K, et al. A review of the stability and durability of non-precious metal catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells[J]. J. Power Sources, 2015, 285(1): 334-348.
3 Rossi K, Asara G G, Baletto F. Structural screening and design of platinum nanosamples for oxygen reduction[J]. ACS Catal., 2020, 10(6): 3911-3920.
4 Egeblad K, Christensen C H, Kustova M, et al., Templating mesoporous zeolites[J]. Chem. Mater., 2008, 20(3): 946-960.
5 Groen, J C, Zhu W D, Brouwer S, et al. Direct demonstration of enhanced diffusion in mesoporous ZSM-5 zeolite obtained via controlled desilication[J]. J. Am. Chem. Soc., 2007, 129(2): 355-360.
6 Meng Y Y, Voiry D, Goswami A, et al. N-, O-, and S-tridoped nanoporous carbons as selective catalysts for oxygen reduction and alcohol oxidation reactions[J]. J. Am. Chem. Soc., 2014, 136(39): 13554-13557.
7 Wei Q, Cherif M, Zhang G, et al. Transforming reed waste into a highly active metal-free catalyst for oxygen reduction reaction[J]. Nano Energy, 2019, 62: 700-708.
8 Kim B N, Kang D, Cho S C, et al. Shorter dinucleotide repeat length in the DRD5 gene is associated with attention deficit hyperactivity disorder[J]. Psychiat. Genet., 2009, 19(1): 57.
9 Orilall M C, Wiesner U. Block copolymer based composition and morphology control in nanostructured hybrid materials for energy conversion and storage: solar cells, batteries, and fuel cells[J]. Chem. Soc. Rev., 2011, 40(2): 520-535.
10 Lee S, Choun M, Ye Y, et al. Designing a highly active metal-free oxygen reduction catalyst in membrane electrode assemblies for alkaline fuel cells: effects of pore size and doping-site position[J]. Angew. Chem. Int. Edit., 2015, 54(32): 9230-9234.
11 Chen J Z, Xu J L, Zhou S, et al. Nitrogen-doped hierarchically porous carbon foam: a free-standing electrode and mechanical support for high-performance supercapacitors[J]. Nano Energy, 2016, 25: 193-202.
12 Guo L, Jiang W J, Zhang Y, et al. Embedding Pt nanocrystals in N-doped porous carbon/carbon nanotubes toward highly stable electrocatalysts for the oxygen reduction reaction[J]. ACS Catal., 2015, 5(5): 2903-2909.
13 Takenaka S, Miyamoto H, Utsunomiya Y, et al. Catalytic activity of highly durable Pt/CNT catalysts covered with hydrophobic silica layers for the oxygen reduction reaction in PEFCs[J]. J. Phys. Chem. C, 2014, 118(2): 774-783.
14 Xu J, Zhao Y, Shen C, et al. Sulfur- and nitrogen-doped, ferrocene-derived mesoporous carbons with efficient electrochemical reduction of oxygen[J]. ACS Appl. Mater. Inter., 2013, 5(23): 12594-12601.
15 Zhang D, Hao Y, Zheng L, et al. Nitrogen and sulfur co-doped ordered mesoporous carbon with enhanced electrochemical capacitance performance[J]. J. Mater. Chem., 2013, 1(26): 7584-7591.
16 Chang Y, Hong F, Liu J, et al. Nitrogen/sulfur dual-doped mesoporous carbon with controllable morphology as a catalyst support for the methanol oxidation reaction[J]. Carbon, 2015, 87: 424-433.
17 Tian C, Tao W, Wang D J, et al. Synthesis of ordered large-pore mesoporous carbon for Cr(Ⅵ) adsorption[J]. Mater. Res. Bull., 2011, 46(9): 1424-1430.
18 Lin T, Chen I W, Liu F, et al. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage[J]. Science, 2015, 350(6267): 1508-1513.
19 Lu J, Bo X, Wang H, et al. Nitrogen-doped ordered mesoporous carbons synthesized from honey as metal-free catalyst for oxygen reduction reaction[J]. Electrochim. Acta, 2013, 108(1): 10-16.
20 Zhang Y, Chen L, Meng Y, et al. Lithium and sodium storage in highly ordered mesoporous nitrogen-doped carbons derived from honey[J]. J. Power Sources, 2016, 335: 20-30.
21 Mane G P, Talapaneni S N, Anand C. Preparation of highly ordered nitrogen-containing mesoporous carbon from a gelatin biomolecule and its excellent sensing of acetic acid[J]. Adv. Funct. Mater., 2012, 22(17): 3596-3604.
22 Wang W, Luo J, Chen W, et al. Synthesis of mesoporous Fe/N/C oxygen reduction catalysts through NaCl crystallite-confined pyrolysis of polyvinylpyrrolidone[J]. J. Mater. Chem. A, 2016, 4(33): 12768-12773.
23 Liang Y, Liu H, Li Z, et al. In situ polydopamine coating-directed synthesis of nitrogen-doped ordered nanoporous carbons with superior performance in supercapacitors[J]. J. Mater. Chem., 2013, 1(48): 15207-15211.
24 Talapaneni S N, Mane G P, Park D, et al. Diaminotetrazine based mesoporous C3N6 with well-ordered 3D cubic structure and its excellent photocatalytic performance on hydrogen evolution[J]. J. Mater. Chem., 2017, 5(34): 18183-18192.
25 Lakhi K S S, Park D H, Singh G, et al. Energy efficient synthesis of highly ordered mesoporous carbon nitrides with uniform rods and their superior CO2 adsorption capacity[J]. J. Mater. Chem., 2017, 5(31): 16220-16230.
26 Yang Z, Yao Z, Li G, et al. Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction[J]. ACS Nano, 2012, 6(1): 205-211.
27 Ji L, Yan J, Jaroniec M, et al. Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance[J]. Angew. Chem. Int. Ed. Engl., 2012, 51(46): 11808.
28 Pan F, Cao Z, Zhao Q, et al. Nitrogen-doped porous carbon nanosheets made from biomass as highly active electrocatalyst for oxygen reduction reaction[J]. J. Power Sources, 2014, 272: 8-15.
29 Zhao Y, Hu C, Hu Y, et al. A versatile, ultralight, nitrogen‐doped graphene framework[J]. Angew. Chem. Int. Ed. Engl., 2012, 51(45): 11371-11375.
30 Li Y, Zhou W, Wang H, et al. An oxygen reduction electrocatalyst based on carbon nanotube–graphene complexes[J]. Nat. Nanotechnol., 2012, 7(6): 394-400.
31 Xiong W, Du F, Liu Y, et al. Society, 3-D carbon nanotube structures used as high performance catalyst for oxygen reduction reaction[J]. J. Am. Chem. Soc., 2010, 132(45): 15839-15841.
32 Jin C, Nagaiah T C, Xia W, et al. Metal-free and electrocatalytically active nitrogen-doped carbon nanotubes synthesized by coating with polyaniline[J]. Nanoscale, 2010, 2(6): 981-987.
33 Wei W, Liang H, Parvez K, et al. Nitrogen-doped carbon nanosheets with size-defined mesopores as highly efficient metal-free catalyst for the oxygen reduction reaction[J]. Angew. Chem. Int. Ed. Engl., 2014, 53(6): 1570-1574.
34 Liang J, Du X, Gibson C, et al. N-doped graphene natively grown on hierarchical ordered porous carbon for enhanced oxygen reduction[J]. Adv. Mater., 2013, 25(43): 6226-6231.
35 Yang, D S, Bhattacharjya D, Inamdar S, et al. Phosphorus-doped ordered mesoporous carbons with different lengths as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline media[J]. J. Am. Chem. Soc., 2012, 134(39): 16127-16130.
36 Liu R, Wu D, Feng X, et al. Nitrogen doped ordered mesoporous graphitic arrays with high electrocatalytic activity for oxygen reduction[J]. Angew. Chem. Int. Edit., 2010, 122(14): 2565-2569.
37 Liang J, Zheng Y, Chen J, et al. Facile oxygen reduction on a three-dimensionally ordered macroporous graphitic C3N4/carbon composite electrocatalyst[J]. Angew. Chem. Int. Edit., 2012, 51(16): 3892-3896.
38 Yang X F, Wang A, Qiao B, et al. Single-atom catalysts: a new frontier in heterogeneous catalysis[J]. Accounts Chem. Res., 2013, 46(8): 1740-1748.
39 Li F, Shu H, Hu C, et al. Atomic mechanism of electrocatalytically active Co-N complexes in graphene basal plane for oxygen reduction reaction[J]. ACS Appl. Mater. Inter., 2015, 7(49): 27405-27413.
40 Shui J, Wang M, Du F, et al. N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells[J]. Sci. Adv., 2015, 1(1): e1400129.
41 Mun Y, Kim M J, Park S A, et al. Soft-template synthesis of mesoporous non-precious metal catalyst with Fe-Nx/C active sites for oxygen reduction reaction in fuel cells[J]. Appl. Catal. B, 2018, 222: 191-199.
42 Wei Q, Zhang G, Yang X, et al. 3D porous Fe/N/C spherical nanostructures as high-performance electrocatalysts for oxygen reduction in both alkaline and acidic media[J]. ACS Appl. Mater. Inter., 2017, 9(42): 36944-36954.
43 Liang H, Wei W, Wu Z, et al. Mesoporous metal-nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction[J]. J. Am. Chem. Soc., 2013, 135(43): 16002-16005.
44 Zhang J, Zhao Z, Xia Z, et al. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions[J]. Nat. Nanotechnol., 2015, 10(5): 444-452.
45 Sun T, Shan N, Xu L, et al. General synthesis of 3D ordered macro-/mesoporous materials by templating mesoporous silica confined in opals[J]. Chem. Mater., 2018, 30(5): 1617-1624.
46 Parlett C M, Wilson K, Lee A F. Hierarchical porous materials: catalytic applications[J]. Chem. Soc. Rev., 2013, 42(9): 3876-3893.
47 Song D, Naik A, Li S, et al. Rapid, large-area synthesis of hierarchical nanoporous silica hybrid films on flexible substrates[J]. J. Am. Chem. Soc., 2016, 138(41): 13473-13476.
48 Zuo X, Xia Y, Ji Q, et al. Self-templating construction of 3D hierarchical macro-/mesoporous silicon from 0D silica nanoparticles[J]. ACS Nano, 2017, 11(1): 889-899.
49 Lokupitiya H N, Jones A, Reid B, et al. Ordered mesoporous to macroporous oxides with tunable isomorphic architectures: solution criteria for persistent micelle templates[J]. Chem. Mater., 2016, 28(6): 1653-1667.
50 Zitolo A, Goellner V, Armel V, et al. Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials[J]. Nat. Mater., 2015, 14(9): 937-942.
51 Fei H, Dong J, Feng Y, et al. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities[J]. Nat. Catal., 2018, 1(1): 63-72.
52 Sun T, Zhao S, Chen W, et al. Single-atomic cobalt sites embedded in hierarchically ordered porous nitrogen-doped carbon as a superior bifunctional electrocatalyst[J]. P. Natl. Acad. Sci. USA, 2018, 115(50): 12692-12697.
53 Wang M J, Zhao T, Luo W, et al. Quantified mass transfer and superior antiflooding performance of ordered macro-mesoporous electrocatalysts[J]. AIChE J., 2018, 64(7): 2881-2889.
54 Wang H, Li W, Zhu Z, et al. Fabrication of an N-doped mesoporous bio-carbon electrocatalyst efficient in Zn-air batteries by an in situ gas-foaming strategy[J]. Chem. Commun., 2019, 55(100): 15117-15120.
55 Liu X, Antonietti M. Moderating black powder chemistry for the synthesis of doped and highly porous graphene nanoplatelets and their use in electrocatalysis[J]. Adv. Mater., 2013, 25(43): 6284-6290.
56 He W, Jiang C, Wang J, et al. High-rate oxygen electroreduction over graphitic-N species exposed on 3D hierarchically porous nitrogen-doped carbons[J]. Angew. Chem. Int. Ed. Engl., 2014, 53(36): 9503-9507.
57 Paraknowitsch J P, Thomas A. Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications[J]. Energ. Environ. Sci., 2013, 6(10): 2839-2855.
58 Zhang G, Luo H, Li H, et al. ZnO-promoted dechlorination for hierarchically nanoporous carbon as superior oxygen reduction electrocatalyst[J]. Nano Energy, 2016, 26: 241-247.
59 Tian P, Wang Y, Li W, et al. A salt induced gelatin crosslinking strategy to prepare Fe-N doped aligned porous carbon for efficient oxygen reduction reaction catalysts and high-performance supercapacitors[J]. J. Catal., 2020, 382: 109-120.
60 Li W, Ding W, Jiang J, et al. A phase-transition-assisted method for the rational synthesis of nitrogen-doped hierarchically porous carbon materials for the oxygen reduction reaction[J]. J. Mater. Chem. A, 2018, 6(3): 878-883.
61 Mao, Z X, Wang M J, Liu L, et al. ZnCl2 salt facilitated preparation of FeNC: enhancing the content of active species and their exposure for highly-efficient oxygen reduction reaction[J]. Chinese J. Catal., 2020, 41(5): 799-806.
62 Wang Y, Chen W, Nie Y, et al. Construction of a porous nitrogen-doped carbon nanotube with open-ended channels to effectively utilize the active sites for excellent oxygen reduction reaction activity[J]. Chem. Commun., 2017, 53(83): 11426-11429.
63 Muldoon P F, Liu C, Miller C C, et al. Programmable topology in new families of heterobimetallic metal-organic frameworks[J]. J. Am. Chem. Soc., 2018, 140(20): 6194-6198.
64 Wang H, Dong X, Lin J, et al. Topologically guided tuning of Zr-MOF pore structures for highly selective separation of C6 alkane isomers[J]. Nat. Commun., 2018, 9(1): 1745.
65 Zhang Y, Zhou H, Lin R, et al. Geometry analysis and systematic synthesis of highly porous isoreticular frameworks with a unique topology[J]. Nat.Commun., 2012, 3(1): 642.
66 Yang, S J, Kim T, Im J H, et al. MOF-derived hierarchically porous carbon with exceptional porosity and hydrogen storage capacity[J]. Chem. Mater., 2012, 24(3): 464-470.
67 Zhao R, Xia W, Lin C, et al. A pore-expansion strategy to synthesize hierarchically porous carbon derived from metal-organic framework for enhanced oxygen reduction[J]. Carbon, 2017, 114: 284-290.
68 Park J, Lee H, Bae Y E, et al. Dual-functional electrocatalyst derived from iron-porphyrin-encapsulated metal-organic frameworks[J]. ACS Appl. Mater. Inter., 2017, 9(34): 28758-28765.
69 Wang J, Wu G, Wang W, et al. A neural-network-like catalyst structure for the oxygen reduction reaction: carbon nanotube bridged hollow PtCo alloy nanoparticles in a MOF-like matrix for energy technologies[J]. J. Mater. Chem. A, 2019, 7(34): 19786-19792.
70 Li W, Ding W, Nie Y, et al. Transformation of metal-organic frameworks into huge-diameter carbon nanotubes with high performance in proton exchange membrane fuel cells[J]. ACS Appl. Mater. Inter., 2019, 11(25): 22290-22296.
71 Najam T, Shah S S, Ding W, et al. Enhancing by nano-engineering: hierarchical architectures as oxygen reduction/ evolution reactions for zinc-air batteries[J]. J. Power Sources, 2019, 438: 226919.
72 Ahn S H, Yu X, Manthiram A. “Wiring” Fe-Nx -embedded porous carbon framework onto 1D nanotubes for efficient oxygen reduction reaction in alkaline and acidic media[J]. Adv. Mater., 2017, 29(26): 1606534.
73 Wang M J, Mao Z X, Liu L, et al. Preparation of hollow nitrogen doped carbon via stresses induced orientation contraction[J]. Small, 2018, 14(52): e1804183.
[1] Yang XIAO, Chunming XU, Xiaoxia YANG, Lihong ZHANG, Wang SUN, Jinshuo QIAO, Zhenhua WANG, Kening SUN. Preparation and electrochemical properties of NiMn2O4 spinel oxide cathode [J]. CIESC Journal, 2020, 71(9): 4292-4302.
[2] Haitao CHEN, Jinshuo QIAO, Zhenhuan WANG, Wang SUN, Haijun LI, Kening SUN. Investigation on preparation and carbon catalytic ability of in-situ bimetallic nanoparticle YST composite anode [J]. CIESC Journal, 2020, 71(9): 4270-4281.
[3] Aiping MU, Dingding YE, Rong CHEN, Xun ZHU, Qiang LIAO. LB simulation of anode mass transfer characteristics in cotton thread-based microfluidic fuel cell [J]. CIESC Journal, 2020, 71(7): 3278-3287.
[4] Fangju LI, Wei WU, Shuangfeng WANG. Pore network simulation of transport properties in grooved gas diffusion layer of PEMFC [J]. CIESC Journal, 2020, 71(5): 1976-1985.
[5] Weibin LI, Chao SONG, Xian YI, Honglin MA, Yanxia DU. 3-D modeling method of porous structure for dynamic icing [J]. CIESC Journal, 2020, 71(3): 1009-1017.
[6] Yao WANG,Yiyun TANG. Advances in single-atom catalysts for oxygen electrodes [J]. CIESC Journal, 2020, 71(10): 4409-4428.
[7] Yu CHEN, Tiancheng MU. Application of deep eutectic solvents in battery and electrocatalysis [J]. CIESC Journal, 2020, 71(1): 106-121.
[8] Zhongmin WAN,Wenxiang QUAN,Hanzhang YAN,Xi CHEN,Taiming HUANG,Yan ZHANG,Jing ZHANG,Xiangzhong KONG. Performance analysis of fuel cell system for unmanned aerial vehicle [J]. CIESC Journal, 2019, 70(S2): 329-335.
[9] Xiao LUO, Hang GUO, Fang YE, Chongfang MA. Experiment of thin film thermal sensor based on vacuum coating technology [J]. CIESC Journal, 2019, 70(S2): 123-129.
[10] Lin WEI, Zihao LIAO, Fangming JIANG. Numerical study on cold start of PEMFC with coolant circulation [J]. CIESC Journal, 2019, 70(S2): 146-154.
[11] Hongwei JIN,Dandan ZHAI,Xin WANG,Shuang ZHAO,Xiangyang MENG,Yueying HE,Yang SHEN,Ming HUI. Effect of graphene/polyaniline modified anode on performance of microbial fuel cell [J]. CIESC Journal, 2019, 70(6): 2343-2350.
[12] Xinfu HE, Xueying LONG, Hongju WU, Kaibo ZHANG, Jun ZHOU, Keke LI, Yating ZHANG, Jieshan QIU. Synthesis of N-doped graphene/porous carbon composite and its electrocatalytic performance on oxygen reduction reaction [J]. CIESC Journal, 2019, 70(6): 2308-2315.
[13] Jing XIE, Mingyi XU, Shuai BAN, Hui SUN, Hongjun ZHOU. Simulation analysis of multi-physics coupling SOFC fueled nature gas in the way of internal reforming and external reforming [J]. CIESC Journal, 2019, 70(1): 214-226.
[14] DING Jiao, YIN Yaoqi, BAI Yaohui, ZHOU Xiangyang, LIU Qihai, YIN Guoqiang. Fabrication and performance of NiO-BZCYYb anode-supported solid oxide fuel cells (SOFCs) by in-situ dip coating technique [J]. CIESC Journal, 2018, 69(S1): 136-142.
[15] YIN Yue, YUAN Linjiang, NIU Yuwei. Relationship between liquid change in dual chambers and performance of electricity production in DCMFC [J]. CIESC Journal, 2018, 69(8): 3605-3610.
Full text



[1] AN Xin, ZUO Yizan, ZHANG Qiang, WANG Jinfu. Methanol Synthesis from CO2 Hydrogenation with a Cu/Zn/Al/Zr Fibrous Catalyst[J]. , 2009, 17(1): 88 -94 .
[2] WEI Zhen, WU Huiying, WU Xinyu. Flow and heat transfer of water/ethanol binary mixtures in silicon microchannels[J]. CIESC Journal, 2008, 59(11): 2706 -2712 .
[3] ZHOU Yexiang;LIU Xinggao;WANG Chengyu. High-purity control of internal thermally coupled distillation column using nonlinear wave model[J]. , 2008, 59(7): 1677 -1680 .
[4] LIN Wamei, LI Kequn, XIE Rongjian, WEN Qingyun, LUO Xin. Optimal design of water networks by using genetic algorithm
based on criterion of maximal water reuse
[J]. CIESC Journal, 2008, 59(2): 410 -414 .

LIU Xuwen;XIONG Jinping;CAO Jingyi;ZUO Yu


Electrochemical corrosion behavior of three coating systems by EIS

[J]. , 2008, 59(3): 659 -664 .
[6] WANG Changsong, WEI Mingjie, LV Linghong, LU Xiaohua. Chemical heterogeneous surface and its applications in chemical engineering[J]. CIESC Journal, 2009, 60(12): 2945 -2951 .
[7] LI Juxiang, TU Shandong. Heat transfer of laminar flow over a plate embedded in porous medium with a constant heat flux under local non-equilibrium condition[J]. CIESC Journal, 2010, 61(1): 10 -14 .
[8] QU Hongqiang;WU Weihong;JIAO Yunhong;XU Jianzhong.

ZnO and metal hydroxides as flame-retardants and smoke suppressants for flexible poly(vinyl chloride)

[J]. , 2006, 57(5): 1259 -1263 .
[9] YU Haiyan;BI Shiwen;ZHAI Xiujing;YANG Yihong;YAN Chuanwei.

Infrared spectrum of aluminate solutions with collector

[J]. , 2006, 57(5): 1231 -1235 .
[10] Gu Peiyun, Sun Jianzhong, Pan Qinmin and Qian Wei (Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027). CHARACTERISTICS OF MICROMIXING IN BATCH STIRRED TANK REACTOR[J]. , 1994, 45(1): 106 -111 .