CIESC Journal ›› 2020, Vol. 71 ›› Issue (10): 4445-4461.doi: 10.11949/0438-1157.20200739

• Reviews and monographs • Previous Articles     Next Articles

Constructing and regulating electrocatalysts: from perspective of mesoscale

Xingqun ZHENG(),Li LI(),Zidong WEI()   

  1. School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
  • Received:2020-06-11 Revised:2020-07-14 Online:2020-10-05 Published:2020-07-16
  • Contact: Zidong WEI E-mail:zxingqun@cqu.edu.cn;liliracial@ cqu.edu.cn;zdwei@ cqu.edu.cn

Abstract:

The electrocatalyst is the core of the electrochemical reaction in the chemical energy conversion process. It is of great significance to improve the electrocatalytic efficiency, save energy and reduce consumption by maximizing its catalytic performance. Guaranteeing almost all active sites of catalysts on the cross of various channels, regulating the intrinsic activity, as well as improving conductivity and stability are of great significance for designing and optimizing electrocatalysts and maximizing their performance. Along with modulation of electrocatalysts, there is a nonlinear relationship among the changes of structure, composition and properties of catalysts, which shows mesoscale characteristics, that is, entirely new characteristics which is different from that of the two extreme cases. This review summarizes the mesoscale phenomena and effects in constructing and modulating active sites of electrocatalysts. It covers the mesoscale phenomenain terms of crystal structure, chemical composition, phase interface and strain effects in tuning structure and performance of electrocatalysts. It is interesting to gain insight into mesoscale mechanisms which opens a fresh perspective to optimal and tunable design and preparation of electrocatalysts, and thus supply copious novel ideas for forming a new theory system for electrochemical catalysis.

Key words: mesoscale, electrocatalyst, crystal structure, chemical composition, phase interface, strain effect

CLC Number: 

  • O 646.5
1 Chen J, Wang F, Qi X, et al. A simple strategy to construct cobalt oxide-based high-efficiency electrocatalysts with oxygen vacancies and heterojunctions[J]. Electrochimica Acta, 2019, 3326(5):134979-134986.
2 Dou S, Wang X, Wang S Y. Rational design of transition metal-based materials for highly efficient electrocatalysis[J]. Small Methods, 2019, 3(1): 1800211-1800228.
3 Gao Q, Zhang W, Shi Z, et al. Structural design and electronic modulation of transition-metal-carbide electrocatalysts toward efficient hydrogen evolution[J]. Adv. Mater., 2019, 31(2): e1802880.
4 Hu Q, Li G, Han Z, et al. Nonmetal doping as a robust route for boosting the hydrogen evolution of metal-based electrocatalysts[J]. Chem. Eur. J., 2020, 26(18): 3930-3942.
5 Zhao Z J, Liu S H, Zha S J, et al. Theory-guided design of catalytic materials using scaling relationships and reactivity descriptors[J]. Nature Reviews Materials, 2019, 4(12): 792-804.
6 Kusada K, Kobayashi H, Yamamoto T, et al. Discovery of face-centered-cubic ruthenium nanoparticles: facile size-controlled synthesis using the chemical reduction method[J]. J. Am. Chem. Soc., 2013, 135(15): 5493-5496.
7 Wang C, Wang Y, Yang H, et al. Revealing the role of electrocatalyst crystal structure on oxygen evolution reaction with nickel as an example[J]. Small, 2018, 14(40): 1802895-1802902.
8 Wang C, Yang H, Zhang Y, et al. NiFe alloy nanoparticles with hcp crystal structure stimulate superior oxygen evolution reaction electrocatalytic activity[J]. Angew. Chem. Int. Ed. Engl., 2019, 58(18): 6099-6103.
9 Tong W, Huang B, Wang P, et al. Crystal-phase-engineered PdCu electrocatalyst for enhanced ammonia synthesis[J]. Angew. Chem. Int. Ed. Engl., 2020, 59(7): 2649-2653.
10 Meng Y, Song W, Huang H, et al. Structure–property relationship of bifunctional MnO2 nanostructures: highly efficient, ultra-stable electrochemical water oxidation and oxygen reduction reaction catalysts identified in alkaline media[J]. J. Am. Chem. Soc., 2014, 136(32): 11452-11464.
11 Yang W, Su Z A, Xu Z, et al. Comparative study of α-, β-, γ- and δ-MnO2 on toluene oxidation: oxygen vacancies and reaction intermediates[J]. Appl. Catal. B, 2020, 260: 118150.
12 Chen P, Xu K, Tao S, et al. Phase-transformation engineering in cobalt diselenide realizing enhanced catalytic activity for hydrogen evolution in an alkaline medium[J]. Adv. Mater., 2016, 28(34): 7527-7532.
13 Strickler A L, Higgins D, Jaramillo T F. Crystalline strontium iridate particle catalysts for enhanced oxygen evolution in acid[J]. ACS Appl. Energy Mater., 2019, 2(8): 5490-5498.
14 Zhao Q, Yan Z, Chen C, et al. Spinels: controlled preparation, oxygen reduction/evolution reaction application, and beyond[J]. Chem. Rev., 2017, 117(15): 10121-10211.
15 Wu G, Wang J, Ding W, et al. A strategy to promote the electrocatalytic activity of spinels for oxygen reduction by structure reversal[J]. Angew. Chem. Int. Ed. Engl., 2016, 55(4): 1340-1344.
16 杨娜, 王俊, 吴光平, 等. 尖晶石结构反转提高氧还原催化活性的密度泛函研究[J]. 中国科学 : 化学, 2017, 47(7): 882-890.
Yang N, Wang J, Wu G P, et al. Density functional theoretical study on the effect of spinel structure reversal on the catalytic activity for oxygen reduction reaction[J]. Scientia Sinica Chimica, 2017, 47(7): 882-890
17 Gong Y, Ding W, Li Z, et al. Inverse spinel cobalt-iron oxide and N-doped graphene composite as an efficient and durable bifuctional catalyst for Li-O2 batteries[J]. ACS Catal., 2018, 8(5): 4082-4090.
18 Cheng F, Shen J, Peng B, et al. Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts[J]. Nat. Chem., 2011, 3(1): 79-84.
19 Cheng F, Zhang T, Zhang Y, et al. Enhancing electrocatalytic oxygen reduction on MnO2 with vacancies[J]. Angew. Chem. Int. Ed. Engl., 2013, 52(9): 2474-2477.
20 Zhang T, Cheng F, Du J, et al. Efficiently enhancing oxygen reduction electrocatalytic activity of MnO2 using facile hydrogenation[J]. Adv. Energy Mater., 2015, 5(1): 1400654.
21 Wei Z D, Huang W Z, Zhang S T, et al. Induced effect of Mn3O4 on formation of MnO2 crystals favourable to catalysis of oxygen reduction[J]. J. Appl. Electrochem., 2000, 30(10): 1133-1136.
22 Wei Z D, Huang W Z, Zhang S T, et al. Carbon-based air electrodes carrying MnO2 in zinc-air batteries[J]. J. Power Sources, 2000, 91(2): 83-85.
23 Li L, Feng X H, Nie Y, et al. Insight into the effect of oxygen vacancy concentration on the catalytic performance of MnO2[J]. ACS Catal., 2015, 5(8): 4825-4832.
24 Jiang M, Fu C, Yang J, et al. Defect-engineered MnO2 enhancing oxygen reduction reaction for high performance Al-air batteries[J]. Energy Sto. Mater., 2019, 18: 34-42.
25 Peng S, Han X, Li L, et al. Electronic and defective engineering of electrospun CaMnO3 nanotubes for enhanced oxygen electrocatalysis in rechargeable zinc-air batteries[J]. Adv. Ener. Mater., 2018, 8(22): 1800612.
26 Hu C, Wang X, Yao T, et al. Enhanced electrocatalytic oxygen evolution activity by tuning both the oxygen vacancy and orbital occupancy of B‐site metal cation in NdNiO3[J]. Adv. Funct. Mater., 2019, 29(30): 1902449.
27 Li K, Zhang R, Gao R, et al. Metal-defected spinel MnxCo3-xO4 with octahedral Mn-enriched surface for highly efficient oxygen reduction reaction[J]. Appl. Cataly. B, 2019, 244: 536-545.
28 Yan L, Lin Y, Yu X, et al. La0.8Sr0.2MnO3-based perovskite nanoparticles with the A-site deficiency as high performance bifunctional oxygen catalyst in alkaline solution[J]. ACS Appl. Mater. Interfaces, 2017, 9(28): 23820-23827.
29 Li C, Han X, Cheng F, et al. Phase and composition controllable synthesis of cobalt manganese spinel nanoparticles towards efficient oxygen electrocatalysis[J]. Nat. Commun., 2015, 6: 7345-7352.
30 Xu X, Li L, Huang J, et al. Engineering Ni3+ cations in NiO lattice at the atomic level by Li+ doping: the roles of Ni3+ and oxygen species for CO oxidation[J]. ACS Catal., 2018, 8(9): 8033-8045.
31 Zhou W, Cao X, Zeng Z, et al. One-step synthesis of Ni3S2 nanorod@ Ni(OH)2 nanosheet core–shell nanostructures on a three-dimensional graphene network for high-performance supercapacitors[J]. Ener. Envir. Sci., 2013, 6(7): 2216-2221.
32 Enman L J, Burke M S, Batchellor A S, et al. Effects of intentionally incorporated metal cations on the oxygen evolution electrocatalytic activity of nickel (oxy) hydroxide in alkaline media[J]. ACS Catal., 2016, 6(4): 2416-2423.
33 Peng L S, Wang J, Nie Y, et al. Dual-ligand synergistic modulation: a satisfactory strategy for simultaneously improving the activity and stability of oxygen evolution electrocatalysts[J]. ACS Catal., 2017, 7(12): 8184-8191.
34 Lai Z, Chaturvedi A, Wang Y, et al. Preparation of 1T'-phase ReS2xSe2(1-x) ( x = 0-1) nanodots for highly efficient electrocatalytic hydrogen evolution reaction[J]. J. Am. Chem. Soc., 2018, 140(27): 8563-8568.
35 Najam T, Shah S S A, Ding W, et al. An efficient anti-poisoning catalyst against SOx, NOx, and POx: P, N-doped carbon for oxygen reduction in acidic media[J]. Angew. Chem. Int. Ed. Engl., 2018, 57(46): 15101-15106.
36 Xiang R, Peng L, Wei Z. Tuning interfacial structures for better catalysis of water electrolysis[J]. Chem. Eur. J., 2019, 25(42): 9799-9815.
37 Xie X H, Song M, Wang L G, et al. Electrocatalytic hydrogen evolution in neutral pH solutions: dual-phase synergy[J]. ACS Catal., 2019, 9(9): 8712-8718.
38 Yang L, Liu R M, Jiao L F. Electronic redistribution: construction and modulation of interface engineering on CoP for enhancing overall water splitting[J]. Adv. Funct. Mater., 2020, 30(14): 1909618.
39 Xiang R, Duan Y, Peng L, et al. Three-dimensional core@shell Co@CoMoO4 nanowire arrays as efficient alkaline hydrogen evolution electro-catalysts[J]. Appl. Catal. B, 2019, 246: 41-49.
40 Yu Z Y, Duan Y, Gao M R, et al. A one-dimensional porous carbon-supported Ni/Mo2C dual catalyst for efficient water splitting[J]. Chem. Sci., 2017, 8(2): 968-973.
41 Ometto F B, Carbonio E A, Teixeira-Neto E, et al. Changes induced by transition metal oxides in Pt nanoparticles unveil the effects of electronic properties on oxygen reduction activity[J]. J. Mater. Chem. A, 2019, 7(5): 2075-2086.
42 Wang Y, Liu S, Pei C, et al. Modulating the surface defects of titanium oxides and consequent reactivity of Pt catalysts[J]. Chem. Sci., 2019, 10(45): 10531-10536.
43 Liu Z, Li Z, Li J, et al. Engineering of Ru/Ru2P interfaces superior to Pt active sites for catalysis of the alkaline hydrogen evolution reaction[J]. J. Mater. Chem. A, 2019, 7(10): 5621-5625.
44 Wang J, Mao S, Liu Z, et al. Dominating role of Ni0 on the interface of Ni/NiO for enhanced hydrogen evolution reaction[J]. ACS Appl. Mater. Interfaces, 2017, 9(8): 7139-7147.
45 Peng L S, Zheng X Q, Li L, et al. Chimney effect of the interface in metal oxide/metal composite catalysts on the hydrogen evolution reaction[J]. Appl. Cataly. B, 2019, 245: 122-129.
46 Zhao L, Zhang Y, Zhao Z, et al. Steering elementary steps towards efficient alkaline hydrogen evolution via size-dependent Ni/NiO nanoscale heterosurfaces[J]. Nat. Sci. Rev., 2019, 7(1): 27-36.
47 Jiang J, Tao S, He Q, et al. Interphase-oxidized ruthenium metal with half-filled d-orbitals for hydrogen oxidation in an alkaline solution[J]. J. Mater. Chem. A, 2020, 8(20): 10168-10174.
48 Yang Y, Sun X, Han G, et al. Enhanced electrocatalytic hydrogen oxidation on Ni/NiO/C derived from a nickel-based metal-organic framework[J]. Angew. Chem. Int. Ed. Engl., 2019, 58(31): 10644-10649.
49 Zhou Y, Xie Z, Jiang J, et al. Lattice-confined Ru clusters with high CO tolerance and activity for the hydrogen oxidation reaction[J]. Nat. Catal., 2020, 3(5): 454-462.
50 Peng L S, Shen J J, Zheng X Q, et al. Rationally design of monometallic NiO-Ni3S2/NF heteronanosheets as bifunctional electrocatalysts for overall water splitting[J]. J. Catal., 2019, 369: 345-351.
51 Peng L, Liao M, Zheng X, et al. Accelerated alkaline hydrogen evolution on M(OH): x/M-MoPOx (M = Ni, Co, Fe, Mn) electrocatalysts by coupling water dissociation and hydrogen ad-desorption steps[J]. Chem. Sci., 2020, 11(9): 2487-2493.
52 Han H, Choi H, Mhin S, et al. Advantageous crystalline–amorphous phase boundary for enhanced electrochemical water oxidation[J]. Ener. Envir. Sci., 2019, 12(8): 2443-2454.
53 Jiang H, Lin Y, Chen B, et al. Ternary interfacial superstructure enabling extraordinary hydrogen evolution electrocatalysis[J]. Materials Today, 2018, 21(6): 602-610.
54 Li X C, She F S, Shen D, et al. Coherent nanoscale cobalt/cobalt oxide heterostructures embedded in porous carbon for the oxygen reduction reaction[J]. RSC Advances, 2018, 8(50): 28625-28631.
55 Jennings P C, Lysgaard S, Hansen H A, et al. Decoupling strain and ligand effects in ternary nanoparticles for improved ORR electrocatalysis[J]. Phys. Chem. Chem. Phys., 2016, 18(35): 24737-24745.
56 Liu F, Wu C, Yang S. Strain and ligand effects on CO2 reduction reactions over Cu-metal heterostructure catalysts[J]. J. Phy. Chem. C, 2017, 121(40): 22139-22146.
57 Luo M C, Guo S J. Strain-controlled electrocatalysis on multimetallic nanomaterials[J]. Nat. Rev. Mater., 2017, 2(11): 17059.
58 Xia Z, Guo S. Strain engineering of metal-based nanomaterials for energy electrocatalysis[J]. Chem. Soc. Rev., 2019, 48(12): 3265-3278.
59 Wang X S, Zhu Y H, Vasileff A, et al. Strain effect in bimetallic electrocatalysts in the hydrogen evolution reaction[J]. ACS Energy Lett., 2018, 3(5): 1198-1204.
60 Yang S, Liu F, Wu C, et al. Tuning surface properties of low dimensional materials via strain engineering[J]. Small, 2016, 12(30): 4028-4047.
61 Mavrikakis M, Hammer B, Norskov J K. Effect of strain on the reactivity of metal surfaces[J]. Phys. Rev. Lett., 1998, 81(13): 2819-2822.
62 Stamenkovic V R, Fowler B, Mun B S, et al. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability[J]. Science, 2007, 315(5811): 493-497.
63 Shao M, Chang Q, Dodelet J P, et al. Recent advances in electrocatalysts for oxygen reduction reaction[J]. Chem. Rev., 2016, 116(6): 3594-3657.
64 Kattel S, Wang G. Beneficial compressive strain for oxygen reduction reaction on Pt (111) surface[J]. J. Chem. Phys., 2014, 141(12): 124713.
65 Moseley P, Curtin W A. Computational design of strain in core-shell nanoparticles for optimizing catalytic activity[J]. Nano Lett., 2015, 15(6): 4089-4095.
66 Li M, Zhao Z, Cheng T, et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction[J]. Science, 2016, 354(6318): 1414-1419.
67 Du M, Cui L, Cao Y, et al. Mechanoelectrochemical catalysis of the effect of elastic strain on a platinum nanofilm for the ORR exerted by a shape memory alloy substrate[J]. J. Am. Chem. Soc., 2015, 137(23): 7397-7403.
68 Wang H, Xu S, Tsai C, et al. Direct and continuous strain control of catalysts with tunable battery electrode materials[J]. Science, 2016, 354(6315): 1031-1036.
69 Bu L, Zhang N, Guo S, et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis[J]. Science, 2016, 354(6318): 1410-1414.
70 Sakong S, Gross A. Dissociative adsorption of hydrogen on strained Cu surfaces[J]. Surf. Sci., 2003, 525(1/2/3): 107-118.
71 Liu F Z, Wu C, Yang G, et al. CO oxidation over strained Pt(100) surface: a DFT study[J]. J. Phy. Chem. C, 2015, 119(27): 15500-15505.
72 Ghosh T, Vukmirovic M B, DiSalvo F J, et al. Intermetallics as novel supports for Pt monolayer O2 reduction electrocatalysts: potential for significantly improving properties[J]. J. Am. Chem. Soc., 2010, 132(3): 906-907.
73 Zhang X, Lu G. Computational design of core/shell nanoparticles for oxygen reduction reactions[J]. J. Phys. Chem. Lett., 2014, 5(2): 292-297.
74 Back S, Jung Y. Importance of ligand effects breaking the scaling relation for core-shell oxygen reduction catalysts[J]. Chemcatchem, 2017, 9(16): 3173-3179.
75 Jansonius R P, Schauer P A, Dvorak D J, et al. Strain influences the hydrogen evolution activity and absorption capacity of palladium[J]. Angew. Chem. Int. Ed. Engl., 2020, 59:12192–12198
76 Zheng X, Li L, Li J, et al. Intrinsic effects of strain on low-index surfaces of platinum: roles of the five 5d orbitals[J]. Phys. Chem. Chem. Phys., 2019, 21(6): 3242-3249.
77 Wexler R B, Martirez J M P, Rappe A M. Chemical pressure-driven enhancement of the hydrogen evolving activity of Ni2P from nonmetal surface doping interpreted via machine learning[J]. J. Am. Chem. Soc., 2018, 140(13): 4678-4683.
78 Wang X P, Wu H J, Xi S B, et al. Strain stabilized nickel hydroxide nanoribbons for efficient water splitting[J]. Ener. Envir. Sci., 2020, 13(1): 229-237.
79 Liu X, Zhang L, Zheng Y, et al. Uncovering the effect of lattice strain and oxygen deficiency on electrocatalytic activity of perovskite cobaltite thin films[J]. Adv. Sci. (Weinh), 2019, 6(6): 1801898.
80 Xie Y, Wang Z W, Zhu T Y, et al. Breaking the scaling relations for oxygen reduction reaction on nitrogen-doped graphene by tensile strain[J]. Carbon, 2018, 139: 129-136.
81 Wang X, Orikasa Y, Takesue Y, et al. Quantitating the lattice strain dependence of monolayer Pt shell activity toward oxygen reduction[J]. J. Am. Chem. Soc., 2013, 135(16): 5938-5941.
82 Zheng X Q, Peng L S, Li L, et al. Role of non-metallic atoms in enhancing the catalytic activity of nickel-based compounds for hydrogen evolution reaction [J]. Chem. Sci., 2018, 9(7): 1822-1830.
[1] Kaicheng CHEN, Yujie TIAN, Fei LI, Hao WU, Wei WANG. EMMS-based flow regime study of circulating fluidized beds [J]. CIESC Journal, 2020, 71(7): 3018-3030.
[2] Jun XU, Yiping FAN, Xiaojie QIAN, Zihan YAN, Chunxi LU. Theoretical analysis of motion-diffusion characteristics in feed injection zone of FCC riser [J]. CIESC Journal, 2020, 71(4): 1450-1459.
[3] Haijun ZHOU, Yuanquan XIONG. Simulation study on influence of supplementary gas on dense-phase pneumatic conveying in horizontal pipe under high pressure [J]. CIESC Journal, 2020, 71(2): 602-613.
[4] Cunpu LI, Jianchuan WANG, Zidong WEI. Mesoscopic strategies and molecular design of diaphragm for electrochemical reactors [J]. CIESC Journal, 2020, 71(10): 4490-4501.
[5] Huiru WANG, Zhenyu LIU, Yuanpeng YAO, Huiying WU. Visualized experiment on solid-liquid phase change heat transfer enhancement with multiple PCMs [J]. CIESC Journal, 2019, 70(4): 1263-1271.
[6] ZHU Litao, LUO Zhenghong. Application of magnetic resonance imaging to multiphase fluid hydrodynamics [J]. CIESC Journal, 2018, 69(9): 3765-3773.
[7] LI Guorong, ZOU Xiangda, WANG Qifan, WANG Xin, TANG Zhongzhi, ZHOU Yangjie, TANG Dian. Crystal structures, electronic structures and conductivity of Si highly doped RuO2 [J]. CIESC Journal, 2018, 69(8): 3717-3723.
[8] TIAN Hua, ZHANG Zhiying, LIU Chunyan. Preparation and characterization of AgO ordered array electrode materials [J]. CIESC Journal, 2018, 69(8): 3711-3716.
[9] SUN Ziwen, CHEN Dailin, ZHONG Wenqi, YU Ai-Bing. MP-PIC simulation of particle clusters in fast fluidized bed risers [J]. CIESC Journal, 2018, 69(8): 3443-3451.
[10] SHUI Hengxin, PANFENG Hongkang, JIN Tian, HU Jun, LIU Honglai. York-shell Co@Co-N/C of bifunctional oxygen electrocatalysts [J]. CIESC Journal, 2018, 69(11): 4702-4712.
[11] DONG Zhengya, CHEN Guangwen, ZHAO Shuainan, YUAN Quan. Sonochemical microreactor-synergistic intensification of ultrasound and microreactor [J]. CIESC Journal, 2018, 69(1): 102-115.
[12] SU Yunxiang, QUAN Xuebo, MIN Wenfeng, QIAO Laicong, LI Libo, ZHOU Jian. Dissipative particle dynamics simulations on loading and release of doxorubicin by PAMAM dendrimers [J]. CIESC Journal, 2017, 68(5): 1757-1766.
[13] ZHOU Yu, WANG Yuxin. Recent progress on electrocatalysts towards oxygen reduction reaction based on heteroatoms-doped carbon [J]. CIESC Journal, 2017, 68(2): 519-534.
[14] CHEN Hongxia, MA Fumin, HUANG Linbin. Super-wettability meshes enhance movement of gas-liquid interface [J]. CIESC Journal, 2016, 67(6): 2318-2324.
[15] QU Jian, LI Baowei, ZHENG Kuncan, WU Wenfei. Establishment of various char-RPM under O2/CO2 atmosphere [J]. CIESC Journal, 2016, 67(10): 4468-4476.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XU Hong, HUANG Weimin, XING Yan, LIN Haibo, JI Honghai, JIANG Mei, LIU Xiaobo, GAN Shucai. Effect of Configuration on Mass Transfer in a Filter-press Type Electrochemical Cell[J]. , 2008, 16(2): 198 -202 .
[2] WEI Xiaokun, DING Qingbao, OU Lin, ZHANG Lu, WANG Changlu. Two-step Enzymatic Synthesis of Guanine Arabinoside[J]. , 2008, 16(6): 934 -937 .
[3] WANG Haitao, YANG Liu, ZHAO Xuehui, YU Tian, DU Qiyun. Improvement of Hydrophilicity and Blood Compatibility on Polyethersulfone Membrane by Blending Sulfonated Polyethersulfone[J]. , 2009, 17(2): 324 -329 .
[4] WANG Qiang, MA Peisheng, NENG Shifeng. Position Group Contribution Method for Estimation of Melting Point of Organic Compounds[J]. , 2009, 17(3): 468 -472 .
[5] ZHOU Shouyong, ZHONG Zhaoxiang, FAN Yiqun, XU Nanping, HE Yuehui. Effects of Sintering Atmosphere on the Microstructure and Surface Properties of Symmetric TiO2 Membranes[J]. , 2009, 17(5): 739 -745 .
[6] DING Chuan, FAN Yurun. Measurement of Diffusion Coefficients of Air in Silicone Oil and in Hydraulic Oil[J]. , 2011, 19(2): 205 -211 .
[7] Akash M. Langde, R. L. Sonolikar. The Influence of an Acoustic Field on the Bed Expansion of Fine Particles[J]. , 2011, 19(4): 649 -655 .
[8] YAO Xiuying, WU Guiying, GUAN Yanjun, ZHANG Kai. CFD simulation for spatio-temporal distribution of solid holdup in liquid-fluidized beds[J]. CIESC Journal, 2010, 61(9): 2287 -2295 .
[9] LIN CHENG-SEN CHIANG YUEN-YAO AND MENG CHU-KWANG (Research Institute of Petroleum Science, Ministry of Petroleum Industry). HIGH PURITY TOLUENE RECOVERY FROM PLATFORMATE BY EXTRACTIVE DISTILLATION WITH PHENOL[J]. , 1959, 10(1): 24 -32 .
[10] REN Xiaoguang LIU Changhou (Department of Material and Chemical Engineering,Beijing Institute of (College of Chemical Engineering,Dalian University of Petrochemical Engineering Techonology,Beijing 102600, China) Techono. SURFACES MAGNETRON SPUTTERING REDUCES SCALE FORMATION UNDER FLOW BOILING[J]. , 2001, 52(2): 173 -175 .