CIESC Journal ›› 2020, Vol. 71 ›› Issue (10): 4674-4687.doi: 10.11949/0438-1157.20200735

• Separation engineering • Previous Articles     Next Articles

Solubility of light alkanes and alkenes in ionic liquids

Rui ZHANG(),Shuyuan DONG,Luo WU,Zhichang LIU,Chunming XU,Haiyan LIU,Xianghai MENG()   

  1. State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
  • Received:2020-06-10 Revised:2020-08-12 Online:2020-10-05 Published:2020-08-15
  • Contact: Xianghai MENG E-mail:zr@cup.edu.cn;mengxh@cup.edu.cn

Abstract:

The solubility of light hydrocarbons in a variety of ionic liquids was studied, and it was found that ionic liquids containing Cu(Ⅰ) had higher solubility for hydrocarbons and alkene/alkane solubility selectivity, and Et3NHCl-2.1CuCl ionic liquid was preferred. The effects of temperature and pressure on the solubility of light hydrocarbons were investigated for the selected ionic liquid. It was found that low temperature and high pressure were favorable for the dissolution of light hydrocarbons, and the alkene/alkane solubility selectivity decreased with the increase of temperature and pressure. The alkene/alkane solubility selectivity was above 8.3 at the temperature of 30℃ and the pressure of 0.2 MPa. The initial dissolution rate of hydrocarbons in ionic liquid was large, but it decreased rapidly with prolonging time, and the dissolution rate of alkenes was higher than that of alkanes at the same conditions. The alkene/alkane separation selectivity increased with decreasing content of alkenes in the mixture of alkenes and alkanes. Light hydrocarbons dissolved in ionic liquids could be desorbed by means of increasing temperature, restoring the dissolution capability of ionic liquids to hydrocarbons. Alkanes were easier to be desorbed than alkenes, and small-molecule hydrocarbons were easier to be desorbed than large-molecule hydrocarbons. The desorption percentage exceeded 92% under optimal conditions. Ionic liquid had a good reusable performance in the absorption and separation of light alkanes and alkenes. The solubility only decreased by less than 5% when it was reused five times, and the alkane/alkane solubility selectivity was basically not affected by reusing times. Software Gaussian 09 was used to study the interaction between anions of ionic liquids and light alkanes and alkanes, and the solubility difference of light alkenes and alkanes in different ionic liquids was well explained.

Key words: ionic liquid, alkane, alkene, solubility, absorption, desorption

CLC Number: 

  • TE 624

Fig.1

Gas solubility testing equipment"

Table 1

Effect of ionic liquid types on solubility and solubility selectivity of ethene and ethane"

离子液体

乙烯溶解度/

(mol/mol)

乙烷溶解度/

(mol/mol)

乙烯/乙烷选择性
Et3NHCl-0.6AlCl30.02800.02001.40
Et3NHCl-0.6FeCl20.02350.01901.23
Et3NHCl-0.6FeCl30.02310.01921.20
Et3NHCl-0.6CuCl0.03960.01682.36
[BMIM]Cl-0.6AlCl30.02410.01861.30
[BMIM]Cl-0.6CuCl0.02910.01322.21
Et3NHCl-1.0AlCl30.02840.02031.40
Et3NHCl-1.0FeCl20.02900.02051.42
Et3NHCl-1.0FeCl30.02810.02081.35
Et3NHCl-1.0CuCl0.04040.01652.45
[BMIM]Cl-1.0CuCl0.03000.01322.28
[BMIM][BF4]0.01770.01421.25

Table 2

Effect of cation donor of ionic liquids on solubility and solubility selectivity of ethene and ethane"

离子液体

乙烯溶解度/

(mol/mol)

乙烷溶解度/

(mol/mol)

乙烯/乙烷选择性
Et3NHCl-1.0CuCl0.00500.00331.52
Me3NHCl-1.0CuCl0.00480.00311.56
Et2NH2Cl-1.0CuCl0.00440.00321.38
Me2NH2Cl-1.0CuCl0.00340.00251.36
EtNH3Cl-1.0CuCl0.00250.00221.14

Table 3

Effect of CuCl/Et3NHCl molar ratio on solubility and solubility selectivity of ethene and ethane"

离子液体

乙烯溶解度/

(mol/mol)

乙烷溶解度/

(mol/mol)

乙烯/

乙烷选择性

Et3NHCl-1.0CuCl0.04040.01652.45
Et3NHCl-1.3CuCl0.04650.01592.92
Et3NHCl-1.5CuCl0.05030.01543.26
Et3NHCl-1.7CuCl0.06240.01095.70
Et3NHCl-2.0CuCl0.08660.01028.47
Et3NHCl-2.1CuCl0.08720.00998.78
Et3NHCl-2.2CuCl0.08720.00998.81
Et3NHCl-2.4CuCl0.08730.01008.71

Table 4

Effect of temperature on solubility and solubility selectivity of alkanes and alkenes"

温度/℃

乙烯/

(mol/mol)

乙烷/

(mol/mol)

乙烯/乙烷选择性

丙烯/

(mol/mol)

丙烷/

(mol/mol)

丙烯/丙烷选择性

异丁烯/

(mol/mol)

异丁烷/

(mol/mol)

异丁烯/异丁烷选择性
300.08720.00998.780.13660.01648.320.19820.02348.48
400.06120.00956.460.11230.01417.970.16830.02098.07
500.04630.00865.390.08020.01117.230.11750.01517.78
600.03470.00675.170.05220.00836.310.08220.01077.65
700.02040.00494.200.03020.00714.260.0520.00737.15

Table 5

Effect of pressure on solubility and solubility selectivity of alkanes and alkenes"

压力/MPa

乙烯/

(mol/mol)

乙烷/

(mol/mol)

乙烯/乙烷选择性

丙烯/

(mol/mol)

丙烷/

(mol/mol)

丙烯/丙烷选择性

异丁烯/

(mol/mol)

异丁烷/

(mol/mol)

异丁烯/

异丁烷选择性

0.20.08720.00998.780.13660.01648.320.19820.02348.48
0.2450.09180.01526.020.14690.01838.040.22720.02758.25
0.30.10820.02125.090.18470.02347.890.23850.03117.67
0.40.14760.03674.020.24120.04225.72
0.480.18720.04684.000.29450.05235.63
0.590.22490.05843.850.34580.06425.39
0.7350.23690.06393.710.36460.06855.33
0.810.24090.06783.550.36960.07025.27

Table 6

Solubility of light alkanes and alkenes in different absorbents"

吸收剂压力/MPa温度/℃烯烃烷烃选择性文献
[Emim][Tf2N]- 1.8 mol/L Ag[Tf2N]0.130~0.34~0.007~71[29]
[Emim][Tf2N]- 1.8 mol/L Ag[Tf2N]0.430~0.42~0.035~20[29]
[Emim][TfO]- 1.2 mol/L Ag[TfO]0.130~0.18~0.004~44[29]
[Emim][TfO]- 1.2 mol/L Ag[TfO]0.430~0.28~0.019~20[29]
[Bmim][BF4]- 1 mol/L Ag[BF4]0.125~1.30~0.02846.6[33]
[Bmim][BF4]- 1 mol/L Ag[BF4]0.225~1.52~0.05427.9[33]
[Bmim][BF4]- 0.5 mol/L Ag[BF4]0.225~0.85~0.05615.2[33]
[Bmpy][BF4]- 1 mol/L Ag[BF4]0.125~1.72~0.02861.3[33]
[Bmpy][BF4]- 1 mol/L Ag[BF4]0.225~1.98~0.05734.9[33]
[Bmpy][BF4]- 0.5 mol/L Ag[BF4]0.225~1.00~0.06515.5[33]
[Bmim]Cl-2 mol/L CuCl0.1250.0510.004212.1[32]
[Bmim]Cl-pyridine-2 mol/L CuCl0.1250.0640.01056.1[32]
[Bmim][SCN]- 1.5 mol/L CuSCN0.1250.120.01210[34]
[Emim][SCN]- 1.5 mol/L CuSCN0.1250.090.0118.18[34]
[Bmim][Br]- 2 mol/L CuBr0.1250.130.0113[35]
[Bmim][Br]- 2 mol/L CuCl0.1250.120.0112[35]
Et3NHCl-2.1CuCl0.2300.08720.00998.78本文
Et3NHCl-2.1CuCl0.2300.13660.01648.32本文
Et3NHCl-2.1CuCl0.2300.4390.0508.78本文
Et3NHCl-2.1CuCl0.2300.6870.0828.32本文

Fig.2

Dissolution rate of propane and propene as a function of time at different temperatures"

Fig.3

Dissolution rate of ethane and ethene as a function of time at different initial pressures"

Fig.4

Alkene/alkane separation selectivity in ionic liquid at different alkene contents"

Fig.5

Desorption percentage of ethane as a function of desorption time at different temperatures"

Fig.6

Desorption percentage of ethene as a function of desorption time at different temperatures"

Fig.7

Desorption percentage of propane, propene, i-butane and i-butene as a function of desorption time at 80℃"

Table 7

Reusing efficiency of ionic liquid for dissolution of light hydrocarbons"

离子液体重复利用次数效率/%
乙烷溶解度乙烯溶解度

乙烯/乙烷

选择性

丙烷溶解度丙烯溶解度

丙烯/丙烷

选择性

异丁烷

溶解度

异丁烯

溶解度

异丁烯/异丁烷选择性
199.8199.6499.8399.2798.5299.2599.0198.3399.31
299.1998.4399.2398.7198.0399.3198.297.7299.51
398.6298.0299.3998.1297.3899.2597.2896.4199.11
498.0497.0899.0397.2796.7499.4696.5395.7799.22
597.3396.7899.4396.2095.4299.1995.7194.2298.45

Fig.8

Interaction structure and binding energy between C2H4 and various anions"

Fig.9

LMOs[(a),(b)], π electron density isosurface map (isovalue=0.05)(c), ELF(d) and LOL(e) color filled map of [CuCl2]ˉ-C2H4 complex"

Fig.10

Interaction structure and binding energy between [CuCl2]ˉ ([Cu2Cl3]ˉ)and C2H6 (C3H6, C3H8)"

Table 8

Hirshfeld atomic charge and nucleophilicity index"

含Cu阴离子原子电荷Cu的亲核指数/eV
[CuCl20.05241.1281
[Cu2Cl30.13041.2452

Fig.11

Interaction structure and binding energy between [CuCl2]ˉ, [Cu2Cl3]ˉ and two ethylene molecules"

1 Gao Y F, Neal L, Ding D, et al. Recent advances in intensified ethylene production— a review[J]. ACS Catalysis, 2019, 9: 8592-8621.
2 王梦瑶, 周嘉文, 任天华, 等. 催化裂化多产丙烯[J]. 化工进展, 2015, 34(6): 1619-1624.
Wang M Y, Zhou J W, Ren T H, et al. Catalytic cracking processes for maximizing propylene production[J]. Chemical Industry and Engineering Progress, 2015, 34(6): 1619-1624.
3 Ali M A, Ahmed S, Al-Baghli N, et al. A comprehensive review covering conventional and structured catalysis for methanol to propylene conversion[J]. Catalysis Letters, 2019, 149: 3395-3424.
4 Shi L, Wang Y, Yan B, et al. Progress in selective oxidative dehydrogenation of light alkanes to olefins promoted by boron nitride catalysts[J]. Chemical Communications, 2018, 54: 10936-10946.
5 Azhin M, Kaghazchi T, Rahmani M. A review on olefin/paraffin separation using reversible chemical complexation technology[J]. Journal of Industrial and Engineering Chemistry, 2008, 14(5): 622-638.
6 杨学萍. 轻质烯烃-烷烃分离新工艺开发进展[J]. 化工进展, 2005, 24(4): 367-371.
Yang X P. Advances in light olefin - paraffin separation technology[J]. Chemical Industry and Engineering Progress, 2005, 24(4): 367-371.
7 Lei Z G, Li C Y, Chen B H. Extractive distillation: a review[J]. Separation and Purification Reviews, 2003, 32(2): 121-213.
8 Matsuyama E, Ikeda A, Komatsuzaki M, et al. High-temperature propylene/propane separation through silica hybrid membranes[J]. Separation and Purification Technology, 2014, 128: 25-30.
9 Lei Z G, Dai C N, Chen B H. Gas solubility in ionic liquids[J]. Chemical Reviews, 2014, 114(2): 1289-1326.
10 赵旭, 邢华斌, 李如龙, 等. 离子液体在气体分离中的应用[J]. 化学进展, 2011, 23(11): 2258-2268.
Zhao X, Xing H B, Li R L, et al. Gas separation based on ionic liquids[J]. Progress in Chemistry, 2011, 23(11): 2258-2268.
11 曹领帝, 曾少娟, 张香平, 等. 离子液体吸收分离硫化氢进展[J]. 化工学报, 2015, 66: 1-9.
Cao L D, Zeng S J, Zhang X P, et al. Progress on hydrogen sulfide removal using ionic liquids[J]. CIESC Journal, 2015, 66: 1-9.
12 王兰云, 李振东, 位亚南, 等. 基于离子液体吸收法的气体分离研究进展[J]. 煤炭学报, 2018, 43(3): 704-716.
Wang L Y, Li Z D, Wei Y N, et al. Gas separation by absorption in pure ionic liquids[J]. Journal of China Coal Society, 2018, 43(3): 704-716.
13 Zhang X P, Zhang X C, Dong H F, et al. Carbon capture with ionic liquids: overview and progress[J]. Energy & Environmental Science, 2012, 5: 6668-6681.
14 Cadena C, Anthony J L, Shah J K, et al. Why is CO2 so soluble in imidazolium-based ionic liquids[J]. Journal of the American Chemical Society, 2004, 126(16): 5300-5308.
15 孟祥海, 刘植昌, 张睿, 等. 用于吸收酸性气体的含胺基离子液体及其制备方法与应用: 101993378[P]. 2011-03-30.
Meng X H, Liu Z H, Zhang R, et al. Amine-containing ionic liquids used for absorbing acid gases and their preparation and application: 101993378[P]. 2011-03-30.
16 Hu P C, Zhang R, Liu Z H, et al. Absorption performance and mechanism of CO2 in aqueous solutions of amine-based ionic liquids[J]. Energy & Fuels, 2015, 29: 6019-6024.
17 Moura M, Santini C C, Gomes M F C. Gaseous hydrocarbon separations using functionalized ionic liquids[J]. Oil & Gas Science and Technology - Revue d'IFP Energies Nouvelles, 2016, 71(2): 1-11.
18 Moura L, Darwich W, Santini C C, et al. Imidazolium-based ionic liquids with cyano groups for the selective absorption of ethane and ethylene[J]. Chemical Engineering Journal, 2015, 280: 755-762.
19 Xing H B, Zhao X, Li R L, et al. Improved efficiency of ethylene/ethane separation using a symmetrical dual nitrile-functionalized ionic liquid[J]. ACS Sustainable Chemistry & Engineering, 2013, 1(11): 1357-1363.
20 Mokrushin V, Assenbaum D, Paape N, et al. Ionic liquids for propene-propane separation[J]. Chemical Engineering Technology, 2010, 33(1): 63-73.
21 Jacquemin J, Gomes M F C, Husson P, et al. Solubility of carbon dioxide, ethane, methane, oxygen, nitrogen, hydrogen, argon, and carbon monoxide in 1-butyl-3-methylimidazolium tetrafluoroborate between temperatures 283 K and 343 K and at pressures close to atmospheric[J]. Journal of Chemical Thermodynamics, 2006, 38(4): 490-502.
22 Anthony J L, Maginn E J, Brennecke J F. Solubilities and thermodynamic properties of gases in the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate[J]. Journal of Physical Chemistry B, 2002, 106(29): 7315-7320.
23 Lee B C, Outcalt S L. Solubilities of gases in the ionic liquid 1-n-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide[J]. Journal of Chemical and Engineering Data, 2006, 51(3): 892-897.
24 Fallanza M, González-Miquel M, Ruiz E, et al. Screening of RTILs for propane/propylene separation using COSMO-RS methodology[J]. Chemical Engineering Journal, 2013, 220: 284-293.
25 Kilaru P K, Condemarin R A, Scovazzo P. Correlations of low-pressure carbon dioxide and hydrocarbon solubilities in imidazolium-, phosphonium-, and ammonium-based room-temperature ionic liquids(1):Using surface tension[J]. Industrial & Engineering Chemistry Research, 2008, 47(3): 900-909.
26 Palgunadi J, Kim H S, Lee J M, et al. Ionic liquids for acetylene and ethylene separation: material selection and solubility investigation[J]. Chemical Engineering and Processing: Process Intensification, 2010, 49(2): 192-198.
27 Xing H B, Zhao X, Yang Q W, et al. Molecular dynamics simulation study on the absorption of ethylene and acetylene in ionic liquids[J]. Industrial & Engineering Chemistry Research, 2013, 52(26): 9308-9316.
28 Huang Y Q, Zhang Y B, Xing H B. Separation of light hydrocarbons with ionic liquids: a review[J]. Chinese Journal of Chemical Engineering, 2019, 27(6): 1374-1382.
29 Sánchez L M G, Meindersma G W, Haan A B. Potential of silver-based room-temperature ionic liquids for ethylene/ethane separation[J]. Industrial & Engineering Chemistry Research, 2009, 48(23):10650-10656.
30 Ortiz A, Gorri D, Irabien A, et al. Separation of propylene/propane mixtures using Ag+-RTIL solutions. Evaluation and comparison of the performance of gas-liquid contactors[J]. Journal of Membrane Science, 2010, 360(1/2): 130-141.
31 Marcos F, Ortiz A, Gorri D, et al. Propylene and propane solubility in imidazolium, pyridinium, and tetralkylammonium based ionic liquids containing a silver salt[J]. Journal of Chemical & Engineering Data, 2013, 58(8): 2147-2153.
32 Shen X L, Abro R, Alhumaydhi I A, et al. Separation of propylene and propane by functional mixture of imidazolintum chloride ionic liquid - organic solvent - cuprous salt[J]. Separation and Purification Technology, 2017, 175: 177-184.
33 Ortiz A, Galan L M, Gorri D, et al. Reactive ionic liquid media for the separation of propylene/propane gaseous mixtures[J]. Industrial & Engineering Chemistry Research, 2010, 49(16): 7227-7233.
34 Yu G R, Zhang L, Alhumaydhi I A, et al. Separation of propylene and propane by alkylimidazolium thiocyanate ionic liquids with Cu+ salt[J]. Separation and Purification Technology, 2015, 156: 356-362.
35 Yu G R, Deng L Y, Abdeltawab A A, et al. Functional solution composed of Cu(Ⅰ) salt and ionic liquids to separate propylene from propane[J]. Industrial & Engineering Chemistry Research, 2014, 53(34): 13430-13435.
36 Neese F. The ORCA program system[J]. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2012, 2(1): 73-78.
37 Lu T, Chen F. Multiwfn: a multifunctional wavefunction analyzer[J]. Journal of Computational Chemistry, 2012, 33(5): 580-592.
38 Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics[J]. Journal of Molecular Graphics, 1996, 14(1): 33-38.
39 Safarik D J, Eldridge R B. Olefin/paraffin separations by reactive absorption: a review[J]. Industrial & Engineering Chemistry Research, 1998, 37(7): 2571-2581.
40 Pipek J, Mezey P G. A fast intrinsic localization procedure applicable for abinitio and semiempirical linear combination of atomic orbital wave functions[J]. The Journal of Chemical Physics, 1989, 90(9): 4916-4926.
41 Becke A D, Edgecombe K E. A simple measure of electron localization in atomic and molecular systems[J]. The Journal of Chemical Physics, 1990, 92(9): 5397-5403.
42 Schmider H L, Becke A D. Chemical content of the kinetic energy density[J]. Journal of Molecular Structure: THEOCHEM, 2000, 527(1/2/3): 51-61.
43 Davidson E R, Chakravorty S. A test of the Hirshfeld definition of atomic charges and moments[J]. Theoretica Chimica Acta, 1992, 83(5/6): 319-330.
44 Geerlings P, De Proft F, Langenaeker W. Conceptual density functional theory[J]. Chemical Reviews, 2003, 103(5): 1793-1874.
[1] Yabin JIA, Xu ZHENG, Kai GAO, Jun GUAN, Pian WEI, Bing QI, Huiyan ZHENG. Field investigation on human related VOCs in existing buildings in one university [J]. CIESC Journal, 2020, 71(S1): 411-416.
[2] Zili YANG, Caiyun GAO, Feiran GONG, Xuyun YU, Yun YU, Tianxun CAI. Working pressures on performance of ultrasonic atomization liquid desiccant dehumidification system [J]. CIESC Journal, 2020, 71(S1): 129-135.
[3] Jiaxin LIU, Yu XU, Er HUA. Structure and hydrogen bonding study on acylamino acid protic ionic liquids composed of 2-N-ethylhexylethylenediaminim cation with acylalanineate anions [J]. CIESC Journal, 2020, 71(S1): 15-22.
[4] Chen WANG, Xiaohui SHE, Xiaosong ZHANG. Thermodynamic study of liquid air energy storage with air purification unit [J]. CIESC Journal, 2020, 71(S1): 23-30.
[5] Jiannian HAN, Gang WANG, Mei YANG, Meijia LIU, Chengdi GAO, Jinsen GAO. Thermodynamic study on fluid catalytic cracking of Fischer-Tropsch wax to produce clean gasoline [J]. CIESC Journal, 2020, 71(S1): 38-45.
[6] Zhongyi HE, Guangyue JIA, Mengmeng ZHANG, Jincan YAN, Liping XIONG, Hongbing JI. Tribological performance of hexagonal boron nitride supported ionic liquid lubricant additives [J]. CIESC Journal, 2020, 71(9): 4303-4313.
[7] Lyuhong ZHANG, Haopeng MA, Xiaowei TANTAI, Na YANG. Study on the absorption of nitric oxide by benzoic acid-based deep eutectic solvents [J]. CIESC Journal, 2020, 71(8): 3644-3651.
[8] Ying ZENG, Peijun CHEN, Xudong YU. Phase equilibria for quaternary system Rb+, Cs+, Mg2+ // SO42- - H2O at 298.2 K [J]. CIESC Journal, 2020, 71(8): 3460-3468.
[9] Xin ZHUO, Minghui QIU, Ping LUO. Mass transfer performance and resistance analysis of chemical absorption of NOx based on ceramic membrane contactor [J]. CIESC Journal, 2020, 71(8): 3652-3660.
[10] Qianqian LI, Siyang TANG, Hairong YUE, Changjun LIU, Kui MA, Shan ZHONG, Bin LIANG. Study on the photocatalytic oxidative dehydrogenation of ethane with CO2 over Pd-Rh /TiO2 catalyst [J]. CIESC Journal, 2020, 71(8): 3556-3564.
[11] Yi GAO, Yahui CAO, Jieping FAN. Study on crystallization separation of ursolic acid and oleanolic acid in ionic liquid [J]. CIESC Journal, 2020, 71(8): 3633-3643.
[12] Yuhua WU,Xin DING,Xiaolu LI,Hongfeng GAO,Wei FENG,Hongcun BAI,Qingjie GUO. Extraction of berberine from Coptis chinensis assisted by ionic liquids and microwave: experiments and molecular modeling [J]. CIESC Journal, 2020, 71(7): 3123-3131.
[13] Yuhao LIU, Ying XU, Tao ZHANG, Qinghua FENG, Fengfeng QI. Effect of releasing dissolved gas from water though decompression on flow stability of water facility [J]. CIESC Journal, 2020, 71(5): 2069-2075.
[14] Xiaolan HUA, Yanan ZHANG, Zhizhong DONG, Yong WANG, Xiao Dong CHEN, Jie XIAO. Simulation and analysis of mass transfer and absorption process intensification by villi movement [J]. CIESC Journal, 2020, 71(5): 2024-2034.
[15] Yu ZHANG, Rong HUA, Xiaokang KOU, Fuping LIU, Jie KONG, Feng ZHANG, Feifan HE, Yu FENG. Preparation of amino modified styrene-divinylbenzene resin and its adsorption of rhenium [J]. CIESC Journal, 2020, 71(5): 2109-2117.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HAN Jin, ZHU Tong, IMAI Tsuyoshi, XIE Liyang, XU Chenghai, NOZAKI Tsutomu. Solubilization of excess sludge by high speed rotary disk[J]. CIESC Journal, 2008, 59(2): 478 -483 .
[2]

WU Zhiguang;MA Hugen;CAI Zuhui

.

Convective heat transfer of R32/R134a inside horizontal microfin tubes

[J]. , 2005, 56(2): 239 -242 .
[3] WU Meirong, ZHANG Rui, ZHOU Jun, XIE Xinxin, YONG Xiaoyu, YAN Zhiying, GE Mingmin, ZHENG Tao. Effect of temperature on methanogens metabolic pathway and structures of predominant bacteria[J]. CIESC Journal, 2014, 65(5): 1602 -1606 .
[4] LIU Changjun, GUO Qiuting, YE Jingyun, SUN Kaihang, FAN Zhigang, GE Qingfeng. Perspective on catalyst investigation for CO2 conversion and related issues[J]. CIESC Journal, 2016, 67(1): 6 -13 .
[5] WANG Ruirui, ZHAO Youjing, SHAO Mingfei, XIANG Xu, DUAN Xue. Recent progresses in water oxidation over layered double hydroxide catalysts[J]. CIESC Journal, 2016, 67(1): 54 -72 .
[6] DONG Jian, ZHANG Shenglu, SUN Weizhen, XU Zhimei, ZHAO Ling. Liquid-phase oxidation kinetics of sec-butylbenzene[J]. CIESC Journal, 2018, 69(11): 4737 -4745 .
[7] XIAO Junyin, YU Xiaochen, TANG Weiqiang, TAO Jiabo, ZHAO Shuangliang, LIU Honglai. DFT study on effect of hydrophilic modification of catalyst on oxidation efficiency of hydrogen gas[J]. CIESC Journal, 2018, 69(11): 4683 -4692 .
[8] YANG Ying, QU Donglei, LI Ping, YU Jianguo. Research and development on enrichment of low concentration coal mine methane by adsorption technology[J]. CIESC Journal, 2018, 69(11): 4518 -4529 .
[9] Rubin ZHAO, Meng CAI, Yuxia PANG. Effects of dialysis and acid precipitation treatment on physicochemical properties of alkali lignin and its lead ions removal properties[J]. CIESC Journal, 2019, 70(5): 1894 -1903 .
[10] Qiang ZHOU, Junzheng HAO, Linhua ZHU, Hong WANG, Tian SI, Yanping HE, Yanlin SUN. Foam phase preparation of porous poly(methyl methacrylate-co-butyl acrylate) microspheres in continuous process[J]. CIESC Journal, 2019, 70(3): 1208 -1219 .