CIESC Journal ›› 2020, Vol. 71 ›› Issue (10): 4590-4600.doi: 10.11949/0438-1157.20200678

• Thermodynamics • Previous Articles     Next Articles

Molecular thermodynamic model for compounding of multiple surfactants

Jin CHENG(),Zhangyang CHEN,Yuming ZHANG,Qi DUAN,Cheng LIAN(),Honglai LIU   

  1. School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
  • Received:2020-06-02 Revised:2020-07-25 Online:2020-10-05 Published:2020-08-10
  • Contact: Cheng LIAN;


Surfactants are widely used in the actual industrial production. Generally, it is a compound system of multiple surfactants to make use of the characteristics of different components, so that the compound system has better performance than a single surfactant. The compounding mechanism of multiple surfactants is still an interesting topic. In this paper, experimental and theoretical models are used to study the synergistic effect among the components of mixed surfactants. Firstly, based on Flory-Huggins theory, the molecular thermodynamic model of the multi-component surfactant system is derived. The interaction parameters of the two systems are correlated through the experimental data of the binary system. The critical micelle concentration (cmc) of the multi-component system and the phase composition of the mixed surfactant micelle can be predicted. The calculated results of the three-component surfactant system model are in good agreement with the experimental values.

Key words: surfactants, synergistic effect, molecular thermodynamics, critical micelle concentration(cmc), Flory-Huggins theory, phase equilibria, model

CLC Number: 

  • TQ 013.1


Maximum bubble pressure curve when the ratio of lauryl alcohol polyoxyethylene ether and Tween 80 is 6.5∶3.5"


Phase equilibrium hypothesis of mixed surfactant systems"


Comparison of the experimental and calculated results of cmc of three binary systems"

Table 1

Flory-Huggins parameters of two-component of three surfactants"



Comparison of the experimental and calculated results of cmc in ternary surfactant solution system"


Calculation results of micelle phase composition ?im at four experimental ternary surfactant solution system"

1 Pereyra R B, Schulz E P, Durand G A, et al. Equation-oriented mixed micellization modeling of a subregular ternary surfactant system with potential medical applications[J]. Industrial & Engineering Chemistry Research, 2017, 56(39): 10972-10980.
2 Gaudin T, Lu H L, Fayet G, et al. Impact of the chemical structure on amphiphilic properties of sugar-based surfactants: a literature overview[J]. Advances in Colloid and Interface Science, 2019, 270: 87-100.
3 王龙, 刘会娥, 刘宇童, 等. 微乳液法用于落地原油应急处理及资源回收的研究[J]. 化工学报, 2019, 70(7): 2699-2707.
Wang L, Liu H E, Liu Y T, et al. Emergency treatment of crude oil contaminated soil and resource recovery using microemulsion[J]. CIESC Journal, 2019, 70(7): 2699-2707.
4 Olewnik-Kruszkowska E, Tarach I, Koter I, et al. Stability of polylactide as potential packaging material in solutions of selected surfactants used in cosmetic formulae[J]. Polymer Testing, 2019, 74: 225-234.
5 Zhang X A, Liu H T, Liang C, et al. Preparation of uniform and highly dispersed magnetic copper ferrite sub-micron sized particles regulated by short-chain surfactant with catechol structure: dual-functional materials for supercapacitor and dye degradation[J]. Journal of Electroanalytical Chemistry, 2020, 870: 114199.
6 Bai Y R, Xiong C M, Shang X S, et al. Experimental study on ethanolamine/surfactant flooding for enhanced oil recovery[J]. Energy Fuels, 2014, 28(3): 1829-1837.
7 Wang D D, Lai N J. Development and application of polymetric surfactant emulsification and viscosity reduction system[J]. Petroleum, 2019, 5(4): 402-406.
8 黄莉. 石蜡/水相变乳液的制备与性能[J]. 化工学报, 2018, 69(4): 1749-1757.
Huang L. Preparation and properties of paraffin/water phase change emulsion[J]. CIESC Journal, 2018, 69(4): 1749-1757.
9 Kaci M, Arab-Tehrany E, Desjardins I, et al. Emulsifier free emulsion: comparative study between a new high frequency ultrasound process and standard emulsification processes[J]. Journal of Food Engineering, 2017, 194(feb.): 109-118.
10 Niu F G, Han B J, Fan J M, et al. Characterization of structure and stability of emulsions stabilized with cellulose macro/nano particles[J]. Carbohydrate Polymers, 2018, 199: 314-319.
11 Burgos-Díaz C, Wandersleben T, Marqués A M, et al. Multilayer emulsions stabilized by vegetable proteins and polysaccharides[J]. Current Opinion in Colloid & Interface Science, 2016, 25: 51-57.
12 Tan T B, Nakajima M, Tan C P. Effect of polysaccharide emulsifiers on the fabrication of monodisperse oil-in-water emulsions using the microchannel emulsification method[J]. Journal of Food Engineering, 2018, 238(dec.): 188-194.
13 王彦玲, 郑晶晶, 赵修太, 等. 低碳醇对氟碳与碳氢表面活性剂复配体系泡沫性能的影响[J]. 化工学报, 2010, 61(5): 1202-1207.
Wang Y L, Zheng J J, Zhao X T, et al. Effect of low carbon alcohols on foaming properties of fluorocarbon and hydrocarbon surfactant mixed system[J]. CIESC Journal, 2010, 61(5): 1202-1207.
14 Szymczyk K, Jańczuk B. The wettability of poly(tetrafluoroethylene) by aqueous solutions of ternary surfactant mixtures[J]. Applied Surface Science, 2010, 256(24): 7478-7483.
15 Flores M V, Voutsas E C, Spiliotis N, et al. Critical micelle concentrations of nonionic surfactants in organic solvents: approximate prediction with UNIFAC[J]. Journal of Colloid and Interface Science, 2001, 240(1): 277-283.
16 Wang Z W, Li G Z, Zhang X Y, et al. A quantitative structure-property relationship study for the prediction of critical micelle concentration of nonionic surfactants[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 197(1/2/3): 37-45.
17 Kardanpour Z, Hemmateenejad B, Khayamian T. Wavelet neural network-based QSPR for prediction of critical micelle concentration of Gemini surfactants[J]. Analytica Chimica Acta, 2005, 531(2): 285-291.
18 Baghban A, Sasanipour J, Sarafbidabad M, et al. On the prediction of critical micelle concentration for sugar-based non-ionic surfactants[J]. Chemistry and Physics of Lipids, 2018, 214: 46-57.
19 Flory P J. Thermodynamic of high polymer solutions[J]. Journal of Chemical Physics, 1942, 10(1): 51-61.
20 Huggins M L. Some properties of solutions of long-chain compounds[J]. Journal of Physical Chemistry, 1942, 46(1): 151-158.
21 Wilson G M. Vapor-liquid equilibrium (Ⅺ): A new expression for the excess free energy of mixing[J]. Journal of the American Chemical Society, 1964, 86(2): 127-130.
22 Renon H, Prausnitz J M. Local compositions in thermodynamic excess functions for liquid mixtures[J]. AIChE Journal, 1968, 14(1): 135-144.
23 Yang J Y, Yan Q L, Liu H L, et al. A molecular thermodynamic model for binary lattice polymer solutions[J]. Polymer, 2006, 47(14): 5187-5195.
24 Yang J Y, Peng C J, Liu H L, et al. A generic molecular thermodynamic model for linear and branched polymer solutions in a lattice[J]. Fluid Phase Equilibria, 2006, 244(2): 188-192.
25 Xin Q, Peng C J, Liu H L, et al. Molecular thermodynamic model of multicomponent chainlike fluid mixtures based on a lattice model[J]. Industrial & Engineering Chemistry Research, 2008, 47(23): 9678-9686.
26 Sargantanis I G, Karim M N. Prediction of aqueous two-phase equilibrium using the Flory-Huggins model[J]. Industrial & Engineering Chemistry Research, 1997, 36(1): 204-211.
27 Zhou Q, Rosen M J. Molecular interactions of surfactants in mixed monolayers at the air/aqueous solution interface and in mixed micelles in aqueous media:  the regular solution approach[J]. Langmuir, 2003, 19(11): 4555-4562.
28 Goldsipe A, Blankschtein D. Titration of mixed micelles containing a pH-sensitive surfactant and conventional (pH-insensitive) surfactants: a regular solution theory modeling approach[J]. Langmuir, 2006, 22(24): 9894-9904.
29 Treiner C, Khodja A A, Fromon M. Micellar solubilization of 1-pentanol in binary surfactant solutions: a regular solution approach[J]. Langmuir, 1987, 3(5): 729-735.
30 Gao F, Lian C, Zhou L H, et al. Phase separation of mixed micelles and synthesis of hierarchical porous materials[J]. Langmuir, 2014, 30(38): 11284-11291.
31 Gao F, Hu J, Peng C J, et al. Synergic effects of imidazolium ionic liquids on P123 mixed micelles for inducing micro/mesoporous materials[J]. Langmuir, 2012, 28(5): 2950-2959.
32 Hu J, Zhou L H, Feng J, et al. Nonideal mixed micelles of Gemini surfactant homologues and their application as templates for mesoporous material MCM-48[J]. Journal of Colloid and Interface Science, 2007, 315(2): 761-767.
33 Smått J, Schunk S, Lindén M. Versatile double-templating synthesis route to silica monoliths exhibiting a multimodal hierarchical porosity[J]. Chemistry of Materials, 2003, 15(12): 2354-2361.
34 Fredenslund A, Jones R L, Prausnitz J M. Group contribution estimation of activity coefficients in nonideal 1iquid mixture[J]. AIChE Journal, 1975, 27(5): 1086-1099.
35 丁振军. 表面活性剂的复配及应用性能研究[D]. 无锡: 江南大学, 2007.
Ding Z J. Study on the mixed systems and applied properties of surfactants[D]. Wuxi: Jiangnan University, 2007.
36 张志庆, 徐桂英, 叶繁, 等. 十二烷基甜菜碱/十二烷基硫酸钠复配体系的表面活性[J]. 物理化学学报, 2001, 17(12): 1122-1125.
Zhang Z Q, Xu G Y, Ye F, et al. Surface activity of mixed system of dodecyl betaine and sodium dodecyl sulphate[J]. Acta Physico-Chimica Sinica, 2001, 17(12): 1122-1125.
[1] Houju PEI, Yanlong JIANG, Hong SHI, Yonglong CUI, Changdong CHEN, Xiaohui QIAN. Forced convective heat transfer around spherical aerostat based on M-L transition model [J]. CIESC Journal, 2020, 71(S1): 136-141.
[2] Huangfeng FANG, Yaoyao LIU, Wenbiao ZHANG. Biomass moisture content prediction in fluidized bed dryer based on LSTM neural network [J]. CIESC Journal, 2020, 71(S1): 307-314.
[3] Lulu SHI. Research of multi-stage temperature control system in large-sized aircraft cabin zone [J]. CIESC Journal, 2020, 71(S1): 322-327.
[4] Fanxin MENG, Jianing SUN, Yue ZHOU, Zanjun GAO, Dingbin CHENG. Modeling and validating of air cycle machine in aircraft environmental control system [J]. CIESC Journal, 2020, 71(S1): 328-334.
[5] Huicai MA, Yiling LIU, Xiaomin DANG. Configuration analysis of integrated thermal management about high altitude long-endurance unmanned aerial vehicle [J]. CIESC Journal, 2020, 71(S1): 417-424.
[6] Desheng MA, Liping PANG, Xiaodong MAO, Sujun DONG. Thermal management of airborne integrated environmental control system [J]. CIESC Journal, 2020, 71(S1): 436-440.
[7] Jie ZHANG, Liping PANG, Hongquan QU, Tianbo WANG. Multi-condition thermal models of avionics pod using stochastic configuration network [J]. CIESC Journal, 2020, 71(S1): 441-447.
[8] Pan LI, Hui KONG, Zhuodong SONG, Zuoyi ZHANG, Yunfang WANG. Vapor-liquid equilibrium for methanol-formaldehyde-polyoxymethylene dimethyl ethers ternary system [J]. CIESC Journal, 2020, 71(S1): 7-14.
[9] Shuangchen MA, Quan ZHOU, Jianzong CAO, Qi LIU, Wentong CHEN, Shuaijun FAN, Yakun YAO, Chenyu LIN, Caini MA. Modeling and simulation of wet desulfurization system dynamic process [J]. CIESC Journal, 2020, 71(8): 3741-3751.
[10] Linzi YIN, Yuyin GUAN, Zhaohui JIANG, Xuemei XU. Optimal method of selecting silicon content data in blast furnace hot metal based on k-means++ [J]. CIESC Journal, 2020, 71(8): 3661-3670.
[11] Jinhui TAN, Jumei XU, Yunhai SHI. Measurement and correlation of vapor-liquid equilibria for ethanol-water-potassium acetate system under atmospheric pressure [J]. CIESC Journal, 2020, 71(8): 3444-3451.
[12] Ying ZENG, Peijun CHEN, Xudong YU. Phase equilibria for quaternary system Rb+, Cs+, Mg2+ // SO42- - H2O at 298.2 K [J]. CIESC Journal, 2020, 71(8): 3460-3468.
[13] Haitao ZHU, Bo YANG, Yaqin WU, Congjie GAO. Numerical simulation of ion transfer during electrodialysis desalination process [J]. CIESC Journal, 2020, 71(8): 3518-3526.
[14] Lin WU, Ji LI, Jiahua ZHU, Yuan GONG, Jing GE. Effect of ammonia concentration on dissolution rate of gypsum particles in phosphogypsum-ammonia-water reaction system for carbon sequestration [J]. CIESC Journal, 2020, 71(8): 3575-3584.
[15] Jian HUANG, Zhong ZHAO. Mechanism modeling and real-time estimation application of thermal efficiency for delayed coking furnace [J]. CIESC Journal, 2020, 71(7): 3140-3150.
Full text




TIAN Xuemin;WANG Ping;TIAN Huage


Nonlinear model predictive control algorithm using velocity-based linearization

[J]. , 2008, 59(7): 1732 -1736 .
[2] WANG Gang, ZHAO Ruihong, GUO Fen, CHEN Jianfeng, LI Zhiping. Synthesis of organized mesoporous alumina by high gravity technology[J]. CIESC Journal, 2008, 59(5): 1310 -1314 .
[3] WANG Xiaolian, WANG Shuying, PENG Yongzhen. Effects of feed water C/P ratio on performance of anaerobic-anoxic-oxic process[J]. CIESC Journal, 2005, 56(9): 1765 -1770 .
[4] Feng Xin, Wang Shaokun and Shi Jun (Nanjing Institute of Chemical Technology, Nanjing). Prediction of Solid-Liquid Equilibria with Adduct Formation[J]. , 1991, 42(3): 261 -268 .
[5] XU Lijie, WANG Shuying, GAN Guanxiong, CHEN Xiangdong, PENG Yongzhen. Phosphorus removal performance of modified CAST process[J]. CIESC Journal, 2011, 62(5): 1402 -1407 .
[6] ZHU Yu;LU Xiaohua;DING Hao;WANG Jun;WANG Yanru;SHI Jun.


[J]. , 2004, 55(8): 1213 -1223 .

XU Zhenzhong;CAO Guiping; SONG Liang;YUAN Xiangqian, ZHANG Minghua


Synthesis of TS-2 molecular sieves with addition of complexant at elevated temperature

[J]. , 2007, 58(7): 1828 -1833 .
[8] LI Qingfang, LIU Zhongliang,HAN Bing, PANG Huizhong, ZHANG Jian,ZHU Wei. Process simulation and analysis of thermal vapor compression based oilfield wastewater desalination systems[J]. CIESC Journal, 2012, 63(6): 1859 -1864 .
[9] ZHANG Wei, WANG Xin, WANG Zhenlei. Economic performance assessment of multivariable MPC based on evidential network[J]. CIESC Journal, 2012, 63(11): 3585 -3590 .
[10] LI Hongzhong, KWAUK Mooson. Review and prospect of fluidization science and technology[J]. CIESC Journal, 2013, 64(1): 52 -62 .